

Overview of NEAT

NEAT is a python library for the study, simulation and simplification of
morphological neuron models. NEAT accepts morphologies in the de facto
standard .swc format [Cannon1998], and implements high-level tools to interact
with and analyze the morphologies.

NEAT also allows for the convenient definition of morphological neuron models.
These models can be simulated, through an interface with the NEURON simulator
[Carnevale2004], or can be analyzed with two classical methods: (i) the
separation of variables method [Major1993] to obtain impedance kernels as
a superposition of exponentials and (ii) Koch’s method to compute impedances
with linearized ion channels analytically in the frequency domain [Koch1985].
Furthermore, NEAT implements the neural evaluation tree framework [Wybo2019]
and an associated C++ simulator, to analyze subunit independence.

Finally, NEAT implements a new and powerful method to simplify morphological
neuron models into compartmental models with few compartments [Wybo2020]. For
these models, NEAT also provides a NEURON interface so that they can be
simulated directly, and will soon also provide a NEST interface [Gewaltig2007].

Structure

NEAT’s main functionality is implemented throught a number of tree classes.
neat.STree is the base class, implementing basic functionalities such as
getting and iterating over nodes, as well as adding and removing nodes. Each
class implements another layer of functionality over the class from which it
inherits. Figure 1 provides an overview of the inheritance structure.
For instance, neat.MorphTree inherits from neat.STree, and implements all
functionality to load, store and interact with morphologies. neat.PhysTree
then adds another layer of functionality by allowing the definition of
electrical parameters.

NEAT furthermore has a number of other classes, notably to implement ion
channels (neat.IonChannel) and to provide a high-level API for the
simplification method described in [Wybo2021] (neat.CompartmentFitter).

[image: NEAT structure overview]
Figure 1. Overview of NEAT structures. NEAT contains a number of tree classes,
inheriting from neat.STree, as well as a number of helper classes.

A NEAT tree consists of nodes, and each tree class has a corresponding node class
(Figure 2A). A tree class contains a root attribute (Figure 2B), which points to the
corresponding node class instance that is the root of the tree (the soma, if
the tree is a MorphTree or a derived class). Each node has an index (by which
it can be accessed from the tree class), a reference to its parent node (None
if the node is the root), and a list containing references to its child nodes
(empty if the node is a leaf).

[image: NEAT structure overview]
Figure 2. Layout of a NEAT tree. A: Each NEAT tree consists of corresponding nodes.
B: A tree contains a root node attribute, and each node has a parent node,
an index and a list of child nodes.

Audience

NEAT is of interest to neuroscientist who aim to understand dendritic
computation, and to explore dendritic computation at the network level.

Python

Python is a powerful programming language that allows simple and flexible
representations neural morphologies. Python has a vibrant and growing ecosystem
of packages that NEAT uses to provide more features such as numerical linear
algebra and drawing. In order to make the most out of NEAT you will want to know
how to write basic programs in Python. Among the many guides to Python, we
recommend the Python documentation [https://docs.python.org/3/] and the text
by Alex Martelli [Martelli03].

Free software

NEAT is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License. We welcome contributions.
Join us on GitHub [https://github.com/unibe-cns/NEAT].

History

NEAT was born in April 2018. The original version was designed and written by
Willem Wybo, based on code by Benjamin Torben-Nielsen. With help of Jakob
Jordan and Benjamin Ellenberger, NEAT became an installable python package with
documentation website.

Contributors are listed in credits.

Documentation

	Release

	0.9.1

	Date

	Mar 25, 2021

	Installation

	Tutorial

	Reference

	Developer Guide

	Release Log

	License

	Credits

	Citing

	Bibliography

	Examples

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install

Note: The following instructions are for Linux and Max OSX systems and only use
command line tools. Please follow the appropriate manuals for Windows systems or
tools with graphical interfaces.

You can install the latest release via pip:

pip install neatdend

The adventurous can install the most recent development version directly from our master branch (don’t use this in production unless there are good reasons!):

git clone git@github.com:unibe-cns/NEAT.git
cd NEAT
pip install .

Post-Install

To use NEAT with NEURON [https://neuron.yale.edu/neuron/], make sure NEURON
is properly installed with its Python interface, and compile and install the
default NEURON mechanisms by running

compilechannels default

To test the installation (requires pytest)

pytest

Tutorial

	Interact with morphologies through neat.MorphTree

	Define morphological models with neat.PhysTree

	Simulate models with neat.NeuronSimTree

	Evaluate impedance matrices with neat.GreensTree

	Simplify a model with neat.CompartmentFitter

	Compute the separation of variables expansion with neat.SOVTree

Interact with morphologies through neat.MorphTree

To illustrate some of the basic functionalities of neat.MorphTree, we’ll read in and analyze a simple ball- and stick model.

[1]:

from neat import MorphTree, MorphNode
load the model
m_tree = MorphTree(file_n='morph/ball_and_stick.swc')

A morphology consists of nodes, that each store the 3d coordinates and radii of the segments on the morphology. A node can be accessed by its index.

[2]:

soma node (always index 1)
print(m_tree[1])
print(m_tree[1].xyz) # 3d coordinates
print(m_tree[1].R) # radius
dendritic node
print(m_tree[4])
print(m_tree[4].xyz) # 3d coordinates
print(m_tree[4].R) # radius

SNode 1
[0. 0. 0.]
10.0
SNode 4
[499. 0. 0.]
1.0

Note that according to the .swc convention, the soma node has index 1. Morphologies should follow the three-point soma convention (http://neuromorpho.org/SomaFormat.html). Hence, the first dendritic node has index 4.

Iterating over nodes is intuitive and happens in a depth firs order. By default, nodes 2 and 3 are skipped in iterations.

[3]:

for node in m_tree: print(node)

SNode 1
SNode 4
SNode 5

We can also iterate over a subtree of the tree when we specify its root to the iterator.

[4]:

for node in m_tree.__iter__(m_tree[4]): print(node)

SNode 4
SNode 5

Treetype

Solving the cable equation on a morphology is often expensive, hence, MorphTree defines a “computational tree” that replaces the the individual nodes between bifurcations with equivalent cylinders. A second three of lower resolution is thus defined.

[5]:

m_tree.setCompTree()

Toggling between both trees is done by setting the MorphTree.treetype attribute:

[6]:

let's print the nodes and their respective length and radii for both trees
m_tree.treetype = 'computational'
print('>>> computational tree')
for node in m_tree: print(str(node) + ', R (um) = ' + str(node.R) + ', L (um) = ' + str(node.L))
m_tree.treetype = 'original'
print('>>> original tree')
for node in m_tree: print(str(node) + ', R (um) = ' + str(node.R) + ', L (um) = ' + str(node.L))

>>> computational tree
SNode 1, R (um) = 10.0, L (um) = 0.0
SNode 5, R (um) = 1.0, L (um) = 1001.0
>>> original tree
SNode 1, R (um) = 10.0, L (um) = 0.0
SNode 4, R (um) = 1.0, L (um) = 499.0
SNode 5, R (um) = 1.0, L (um) = 502.0

It is important to be aware of the fact that NEAT uses the concept of treetype, but if you only use NEAT functions, you will never have to set it yourself, as all functions automatically set the treetype they require.

Locations

Locations on a morphology are defined relative to the original node structure. A location consists of two coordinates: the node index and an \(x\) \((\in [0,1])\)-coordinate, specifying the relative position of the location between the node and its parent node (\(x=0\) means that the location is at the parent node’s 3d coordinates whereas \(x=1\) means that it’s at the node’s coordinates). Locations are coded as a tuple or a dictionary and collections of them can be stored under
a given name.

[7]:

loc1 = {'node': 4, 'x': .2} # a location close to the soma
loc2 = (5, .8) # a location close to the dendritic tip
m_tree.storeLocs([loc1, loc2], name='my_favourite_locs')

Note that any NEAT function converts locations internally to :class:MorphLoc instances, that return the coordinates relative to the original or the computational tree based on which treetype is on. Locations can be retrieved as well (note that they are returned as :class:MorphLoc instances).

[8]:

locs = m_tree.getLocs('my_favourite_locs')
returned as instances
print(locs)
still print the original coordinates
print(locs[0])
but returned coordinate value depends on `treetype`
m_tree.treetype = 'original'
print('original', locs[0]['node'], locs[0]['x'])
m_tree.treetype = 'computational'
print('computational', locs[0]['node'], locs[0]['x'])

[{'node': 4, 'x': 0.20 }, {'node': 5, 'x': 0.80 }]
{'node': 4, 'x': 0.20 }
original 4 0.2
computational 5 0.09970029970029971

Locations can also easily be compared

[9]:

locs[0] == (4, 0.2)

[9]:

1

A number of functions are implemented that distribute locations on the morphology (MorphTree.distributeLocsOnNodes(), MorphTree.distributeLocsUniform(), MorphTree.distributeLocsRandom()). We refer to the documentation for their specific uses. For now we’ll distribute a set of locations uniformly on the morphology with a spacing of approximately 4 \(\mu\)m.

[10]:

locs = m_tree.distributeLocsUniform(dx=4.)

We can also evaluate the path length (the length of the shortest path, in \(\mu\)m) between locations:

[11]:

print(m_tree.pathLength(locs[0], locs[1]))

4.0040000000000004

Nodearg

To look at the more advanced functionality of MorphTree, we’ll read in a real morphology

[12]:

m_tree = MorphTree(file_n='morph/N19ttwt.CNG.swc')
m_tree.setCompTree()

In NEAT, functions that run over a set of nodes require a node_arg, which specifies which set of nodes. For all it’s uses, we refer to the documentation of MorphTree._convertNodeArgToNodes(). Now, we’ll use it to distribute locations uniformly on the subtree of node 76.

[13]:

subtree_locs = m_tree.distributeLocsUniform(dx=15., node_arg=m_tree[74], name='subtree')

Note that this set of locations is stored under the name 'subtree'

Plotting

We can plot 2D projections of the morphology with MorphTree.plot2DMorphology(). This function has many options, we’ll use this function to plot the morphology of the granule cell in combination with the locations defined before.

[14]:

import matplotlib.pyplot as pl
pl.figure()
ax = pl.gca() # axes object needs to be passed to NEAT plot function
m_tree.plot2DMorphology(ax, marklocs=subtree_locs, locargs=dict(marker='o', mec='r', mfc='y'))
pl.show()

[image: ../_images/_tutorials_morphologies_34_0.png]

We can also unravel the morphology on a 1 dimensional axis (depth-first ordering). That way we can visualize the value of field defined on the morphology (such as membrance voltage).

[15]:

We have to define a set of locations on the morphology at which the function is evaluated (here dx ~ 4 um)
m_tree.makeXAxis(4.)
create a function
import numpy as np
d2s = m_tree.distancesToSoma('xaxis') # the distances to the soma (in um) of the locations stored under 'xaxis'
y_arr = np.sin(d2s/200.) # function to be plotted
plot the function
ax = pl.figure().gca()
m_tree.plot1D(ax, y_arr, lw='2', c='r') # we can use the same keyword arguments as for the matplotlib plot function
pl.show()

[image: ../_images/_tutorials_morphologies_36_0.png]

As such, it is not very clear which x-value corresponds with which location on the morphology. To remedy this, we can color each branch of the morphology differently and color the x-axis accordingly.

[16]:

from matplotlib import cm
pl.figure()
ax1 = pl.subplot(121); ax2 = pl.subplot(122)
to color the x-axis, node colors have to be set first
m_tree.setNodeColors()
plot the morphology with associated colors
m_tree.plot2DMorphology(ax1, cs='x_color', cmap=pl.get_cmap('jet'), plotargs={'lw':3})
plot the function
m_tree.plot1D(ax2, y_arr, lw='2', c='r')
color the x-axis of the plot according to the branch where each location is situated
m_tree.colorXAxis(ax2, cmap=pl.get_cmap('jet'))

[image: ../_images/_tutorials_morphologies_38_0.png]

Note that MorphTree.colorXAxis() gets its y-coordinates for the colored line as the axes limits. If the limits are changed after the colored axis is added, this may result in funky position for the colored line. Hence, only call this function after all lines are added to the plot.

We can also plot fields defined on the morphology as a function of the distance to the soma.

[17]:

ax = pl.figure().gca()
m_tree.plotTrueD2S(ax, y_arr, c='r')
pl.show()

[image: ../_images/_tutorials_morphologies_41_0.png]

Note that here we only see a single line as our field is only a function of the distance to the soma.

Finally, we may want to select a custom set of locations on the morphology. To get the node indices, NEAT implements an interactive plot function that, when one clicks on a location of the morphology, the indices of nearby nodes are printed as well as their distances to the soma (although the interactive part does not seem to run in the notebook, but it works when you just run python).

[18]:

m_tree.plotMorphologyInteractive()

[image: ../_images/_tutorials_morphologies_44_0.png]

Resampling

Some applications may require a resampling of the tree. A tree can be resampled starting from any given set of locations (although low resolution sets may give funny results). The positions of the nodes of the new tree in 3d space will then correspond to positions of the locations on the old tree. Note that the soma or the original tree is added by default, even if it is not in the set of locations.

[19]:

create the resampled tree
m_tree_resampled = m_tree.createNewTree('subtree')
plot the resampled tree
ax = pl.figure().gca()
m_tree_resampled.plot2DMorphology(ax)
pl.show()

[image: ../_images/_tutorials_morphologies_47_0.png]

Define morphological models with neat.PhysTree

The Class neat.PhysTree is used to define the physiological parameters of neuron models. It inherits from neat.MorphTree and thus has all its functionality. Just as neat.MorphTree, instances are initialized based on the standard .swc format:

[1]:

from neat import PhysTree
ph_tree = PhysTree(file_n='morph/L23PyrBranco.swc')

Defining physiological parameters

A PhysTree consists of neat.PhysNode instances, which inherit from neat.MorphNode. Compared to a MorphNode, a PhysNode has extra attributes (initialized to some default value) defining physiological parameters:

[2]:

specific membrance capacitance (uF/cm^2)
print('default c_m node 1:', ph_tree[1].c_m)
axial resisitance (MOhm*cm)
print('default r_a node 1:', ph_tree[1].r_a)
point-like shunt located at {'node': node.index, 'x': 1.} (uS)
print('default g_shunt node 1:', ph_tree[1].g_shunt)
leak and ion channel currents, stored in a dict with
key: 'channel_name', value: [g_max, e_rev]
print('default currents node 1:', ph_tree[1].currents)

default c_m node 1: 1.0
default r_a node 1: 0.0001
default g_shunt node 1: 0.0
default currents node 1: {}

It is not recommended, and for ion channels even forbidden, to set the parameters directly via the nodes. Rather, the parameters should be specified with associated functions of PhysTree. These functions accept a node_arg keyword argument, which allows selecting a specific set of nodes. Parameters, can be given as float, in which case all nodes in node_arg will be set to the same value, a dict of {node.index: parameter_value}, or a callable function where the input is the
distance of the middle of the node (loc = {'node': node.index, 'x': .5}) to the soma and the output the parameter.

Let’s use PhysTree.setPhysiology() to set capacitance (1st argument) and axial resistance (2nd argument) in the whole tree:

[3]:

ph_tree.setPhysiology(lambda x: .8 if x < 60. else 1.6*.8, 100.*1e-6)

Here, we defined the capacitance to be \(.8\) \(\mu\)F/cm\(^2\) when the mid-point of the node is less than 60 \(\mu\)m from the soma and \(1.6*.8\) \(\mu\)F/cm\(^2\), a common factor to take dendritic spines into account. Axial resistance was set to a constant value throughout the tree.

To set ion channels (see the ‘Ionchannels in NEAT’ tutorial on how to create your own ion channels), we must create the ion channel instance first. Here, we’ll set a default sodium and potassium channel:

[4]:

from neat.channels.channelcollection.channelcollection import Na_Ta, Kv3_1
create the ion channel instances
na_chan = Na_Ta()
k_chan = Kv3_1()
set the sodium channel only at the soma, with a reversal of 50 mV
ph_tree.addCurrent(na_chan, 1.71*1e6, 50., node_arg=[ph_tree[1]])
set the potassium channel throughout the dendritic tree, at 1/10th
of its somatic conductance, and with a reversal of -85 mV
gk_soma = 0.45*1e6
ph_tree.addCurrent(k_chan, lambda x: gk_soma if x < .1 else gk_soma/10., -85.)

Now, we only have to set the leak current. We have two possibilities for this: (i) we could set the leak current by providing conductance and reversal in the standard way with PhysTree.setLeakCurrent() or (ii) with could fit the leak current to fix equilibrium potential and membrane time scale (if possible) with PhysTree.fitLeakCurrent(). We take the second option here:

[5]:

fit leak current to yield an equilibrium potential of -70 mV and
a total membrane time-scale of 10 ms (with channel opening
probabilities evaluated at -70 mV)
ph_tree.fitLeakCurrent(-70., 10.)

Inspecting the physiological parameters

We can now inspect the contents of various PhysNode instances:

[6]:

soma node
print(ph_tree[1])

SNode 1 --- (r_a = 9.999999999999999e-05 MOhm*cm, g_Na_Ta = 1710000.0 uS/cm^2, g_Kv3_1 = 450000.0 uS/cm^2, g_L = 31.540810731846726 uS/cm^2, c_m = 0.8 uF/cm^2)

[7]:

dendrite node
print(ph_tree[115])

SNode 115, Parent: SNode 115 --- (r_a = 9.999999999999999e-05 MOhm*cm, g_Kv3_1 = 45000.0 uS/cm^2, g_L = 123.19344287327341 uS/cm^2, c_m = 1.2800000000000002 uF/cm^2)

Or, to get the full information on conductances and reversal potentials of membrane currents:

[8]:

soma node
print(ph_tree[1].currents)

{'Na_Ta': [1710000.0, 50.0], 'Kv3_1': [450000.0, -85.0], 'L': [31.540810731846726, -48.63880498727144]}

[9]:

dendrite node
print(ph_tree[115].currents)

{'Kv3_1': [45000.0, -85.0], 'L': [123.19344287327341, -69.41475491536457]}

Active dendrites compared to closest passive version

Imagine we aim to investigate the role of active dendritic channels, and to that purpose want to compare the active dendritic tree with a passive version. We may compute the leak conductance of this “passified” tree as the sum of all ion channel conductance evaluate at the equilibrium potential. The equilibrium potentials is stored on the tree using PhysTree.setEEq():

[10]:

ph_tree.setEEq(-70.)

To obtain the passified tree, we use PhysTree.asPassiveMembrane(). However, this function will overwrite the parameters of the original nodes, if we want to maintain the initial tree, we have to copy it first:

[11]:

copy the initial tree
ph_tree_pas = ph_tree.__copy__()
set to passive (except the soma)
ph_tree_pas.asPassiveMembrane([n for n in ph_tree_pas if n.index != 1])

We can now inspect the nodes:

[12]:

soma node
print(ph_tree_pas[1])

SNode 1 --- (r_a = 9.999999999999999e-05 MOhm*cm, g_Na_Ta = 1710000.0 uS/cm^2, g_Kv3_1 = 450000.0 uS/cm^2, g_L = 31.540810731846726 uS/cm^2, c_m = 0.8 uF/cm^2)

[13]:

dendrite node
print(ph_tree_pas[115])

SNode 115, Parent: SNode 115 --- (r_a = 9.999999999999999e-05 MOhm*cm, g_L = 127.99999999999991 uS/cm^2, c_m = 1.2800000000000002 uF/cm^2)

And the currents:

[14]:

soma node
print(ph_tree_pas[1].currents)

{'Na_Ta': [1710000.0, 50.0], 'Kv3_1': [450000.0, -85.0], 'L': [31.540810731846726, -48.63880498727144]}

[15]:

dendrite node
print(ph_tree_pas[115].currents)

{'L': [127.99999999999991, -70.0]}

Comparing this to the previously shown nodes of the full tree, we see that the dendrite nodes have been “passified”.

Computational tree

The computational tree in PhysTree works the same as in MorphTree, except that it’s derivation also considers changes in physiological parameters, next to changes in morphological parameters.

[16]:

ph_tree.setCompTree()
compare number of nodes in computational tree and original tree
ph_tree.treetype = 'original'
print('%d nodes in original tree'%(len(ph_tree)))
ph_tree.treetype = 'computational'
print('%d nodes in computational tree'%(len(ph_tree)))

432 nodes in original tree
98 nodes in computational tree

Compare this to the number of nodes in the computational tree induced solely by the morphological parameters:

[17]:

from neat import MorphTree
m_tree = MorphTree('morph/L23PyrBranco.swc')
m_tree.setCompTree()
m_tree.treetype = 'computational'
print('%d nodes in computational `MorphTree`'%len(m_tree))

87 nodes in computational `MorphTree`

Note: only call this PhysTree.setCompTree when all physiological parameters have been set, and *never* change parameters stored at individual nodes when treetype is computational, as this leads to the computational tree being inconsistent with the original tree.

Simulate models with neat.NeuronSimTree

NEAT implements an interface to the NEURON simulator, so that models defined by neat-trees can be simulated with the NEURON simulator. To have access to this functionality, the NEURON simulator and it’s Python interface need to be installed.

The class neat.NeuronSimTree implements this interface, and inherits from neat.PhysTree. Hence, a NeuronSimTree can be defined in the same way as a PhysTree.

[18]:

from neat import NeuronSimTree
sim_tree = NeuronSimTree(file_n='morph/L23PyrBranco.swc')
sim_tree.setPhysiology(lambda x: .8 if x < 60. else 1.6*.8, 100.*1e-6)
... etc

The __copy__ function

If a different type of tree is needed than the one originality defined, a handy feature of NEAT’s copy function can be used: we can specify the type of tree we want as a keyword argument to neat.MorphTree.__copy__(). This function then copies all attributes that both tree classes have in common. Since NeuronSimTree is a subclass of PhysTree, we end up with an identical tree, but with additional functions and associated attributes to simulate the associated NEURON model.

[19]:

sim_tree = ph_tree.__copy__(new_tree=NeuronSimTree())

Setting up a simulation

First, we must initialize the tree structure into hoc.

[20]:

sim_tree.initModel(t_calibrate=100.)

We may then add inputs to the tree. NEAT implements a number of standard synapse types and current injections. Let’s apply a DC current step to the soma and also give some input to a conductance-based dendritic synapse.

[21]:

somatic DC current step with amplitude = 0.100 nA, delay = 5. ms and duration = 50. ms
sim_tree.addIClamp((1.,.5), 0.010, 5., 50.)
dendritic synapse with rise resp. decay times of .2 resp 3. ms and reversal of 0 mV
sim_tree.addDoubleExpSynapse((115,.8), .2, 3., 0.)
give the dendritic synapse a weight of 0.005 uS and connect it to an input spike train
sim_tree.setSpikeTrain(0, 0.005, [20.,22.,28.,29.,30.])

We will record voltage at the somatic and dendritic site. Recording locations should be stored under the name ‘rec locs’.

[22]:

sim_tree.storeLocs([(1,.5), (115,.8)], name='rec locs')

We can then run the model for \(60\) ms and plot the results:

[23]:

simulate the model and delete all hoc-variables afterwards
res = sim_tree.run(60.)
sim_tree.deleteModel()

plot the results
import matplotlib.pyplot as pl
pl.plot(res['t'], res['v_m'][0], c='r', label=r'v_{soma}')
pl.plot(res['t'], res['v_m'][1], c='b', label=r'v_{dend}')
pl.legend(loc=0)
pl.show()

[image: ../_images/_tutorials_models_50_0.png]

User defined point-process

Note that it is very easy to add user defined point-process to the NeuronSimTree. In fact, all any of the default functions to add point-process do, is defining a neat.MorphLoc based on the input, so that the point process is added at the right coordinates no matter whether treetype was ‘original’ or ‘computational’. All hoc sections are stored in the dict self.sections which has as keys the node indices. Hence, in pseudo code one would do:

loc = neat.MorphLoc((node.index, x-coordinate), sim_tree)

define the point process at the correct location
pp = h.user_defined_point_process(sim_tree.sections[loc['node']](loc['x']))

set its parameters
pp.param1 = val1
pp.param2 = val2
...

store the point process (e.g. if it is a synapse in `sim_tree.syns`)
sim_tree.syns.append(pp)

Evaluate impedance matrices with neat.GreensTree

The class neat.GreensTree inherits from neat.PhysTree and implements Koch’s algorithm [-@Koch1984] to calculate impedances in the Fourrier domain. For a given input current of frequency \(\omega\) at location \(x\), the impedance gives the linearized voltage response at a location \(x^{\prime}\):

\begin{align}
v_{x^{\prime}}(\omega) = z_{x^{\prime}x}(\omega) \, i_x(\omega).
\end{align}
Applying the inverse Fourrier transform yields a convolution in the the time domain:

\begin{align}
v_{x^{\prime}}(t) = z_{x^{\prime}x}(t) \ast i_x(t),
\end{align}
with we call \(z_{x^{\prime}x}(t) = FT^{-1} \left(z_{x^{\prime}x}(\omega) \right)\) the impedance kernel. The steady state impedance is then:

\begin{align}
z_{x^{\prime}x} = \int_0^{\infty} \mathrm{d}t \, z_{x^{\prime}x}(t) = z_{x^{\prime}x}(\omega = 0).
\end{align}

Computing an impedance kernel

To compute an impedance kernel, we first have to initialize the GreensTree:

[24]:

from neat import GreensTree
greens_tree = ph_tree.__copy__(new_tree=GreensTree())

For the calculation to proceed efficiently, GreensTree first sets effective, frequency-dependent boundary conditions for each cylindrical section. Hence we must specify the frequencies at which we want to evaluate impedances. If we aim to also compute temporal kernels, neat.FourrierTools is a handy tool to obtain the correct frequencies. Suppose for instance that we aim to compute an impedance kernels from \(0\) to \(50\) ms:

[25]:

from neat import FourrierTools
import numpy as np
create a Fourriertools instance with the temporal array on which to evaluate the impedance kernel
t_arr = np.linspace(0.,50.,1000)
ft = FourrierTools(t_arr)
appropriate frequencies are stored in `ft.s`
set the boundary condition for cylindrical segments in `greens_tree`
greens_tree.setImpedance(ft.s)

We can now compute for instance the impedance kernel between dendritic and somatic site:

[26]:

z_trans = greens_tree.calcZF((1,.5), (115,.8))

plot the kernel
pl.plot(ft.s.imag, z_trans.real, 'b')
pl.plot(ft.s.imag, z_trans.imag, 'r')
pl.xlim((-1000.,1000.))
pl.show()

[image: ../_images/_tutorials_models_58_0.png]

We can also obtain this kernel in the time domain with the FourrierTools object:

[27]:

time domain kernel
tt, zt = ft.ftInv(z_trans)

comparison with NEURON simulation
sim_tree.initModel(t_calibrate=300.)
i_amp, i_dur = 0.001, 0.1
sim_tree.addIClamp((115,.8), i_amp, 0., i_dur)
res = sim_tree.run(50.)
sim_tree.deleteModel()
res['v_m'] -= res['v_m'][:,-1]
res['v_m'] /= (i_amp*1e-3*i_dur)

plot the kernel
pl.plot(tt, zt.real, 'b', label='computed')
pl.plot(res['t'], res['v_m'][0], 'r--', label='simulated')
pl.legend(loc=0)
pl.show()

[image: ../_images/_tutorials_models_60_0.png]

Computing the impedance matrix

While GreensTree.calcZF() could be used to explicitely compute the impedance matrix, GreensTree.calcImpedanceMatrix() uses the symmetry and transitivity properties of impedance kernels to further optimize the calculation.

[28]:

z_locs = [(1,.5), (115,.8)]
z_mat = greens_tree.calcImpedanceMatrix(z_locs)

This matrix has shape (len(ft.s), len(z_locs), len(z_locs)). The zero-frequency component is at ft.ind_0s. Hence, the following gives the steady state impedance matrix:

[29]:

print(z_mat[ft.ind_0s])

[[88.07091747+0.j 83.93186356+0.j]
 [83.93186356+0.j 183.59769195+0.j]]

Simplify a model with neat.CompartmentFitter

The class neat.CompartmentFitter is used to obtain simplified compartmental models, where the parameters of the compartments are optimized to reproduce voltages at any set of locations on the morphology. It is initialized based on a neat.PhysTree:

[30]:

from neat import CompartmentFitter
c_fit = CompartmentFitter(ph_tree)

The function CompartmentFitter.fitModel() then returns a neat.CompartmentTree object defining the simplified model, with the parameters of the optimized compartments:

[31]:

compute a simplified tree containing a somatic and dendritic compartment
f_locs = [(1,.5), (115,.8)]
c_tree = c_fit.fitModel(f_locs, use_all_channels_for_passive=False)

One way to understand whether the reduction will be faithful, is to check whether the passive reduced model reproduces the same impedance kernels as the full model. The checkPassive() function of neat.CompartmentFitter allows the comparison of these kernels between full and reduced models:

[32]:

c_fit.checkPassive(f_locs, use_all_channels_for_passive=False)

[image: ../_images/_tutorials_models_70_0.png]

[image: ../_images/_tutorials_models_70_1.png]

The simplified model neat.CompartmentTree

Each neat.CompartmentNode in the CompartmentTree stores the optimized parameters of the compartment, and the coupling conductance with it’s parent node.

[33]:

print(c_tree)

>>> Tree
 SNode 0 --- (g_c = 0.000000000000 uS, g_L = 0.009188301476 uS, g_Na_Ta = 14.378466892362 uS, g_Kv3_1 = 7.000477231569 uS, c = 0.000099142300 uF)
 SNode 1, Parent: SNode 1 --- (g_c = 0.009224434868 uS, g_L = 0.000411034483 uS, g_Na_Ta = 0.000000000000 uS, g_Kv3_1 = 0.072296414995 uS, c = 0.000004268327 uF)

To keep track of the mapping between compartments and locations, each CompartmentNode also has a loc_ind attribute, containing the index of the location in the original list given to CompartmentFitter.fitModel() (here f_locs) to which the compartment is fitted:

[34]:

node 0 corresponds to location 0 in `f_locs`
print('node index: %d, loc index: %d'%(c_tree[0].index, c_tree[0].loc_ind))
node 1 corresponds to location 1 in `f_locs`
print('node index: %d, loc index: %d'%(c_tree[1].index, c_tree[1].loc_ind))

node index: 0, loc index: 0
node index: 1, loc index: 1

Here, these indices correspond, but in general there is *no* guarantee this will be the case. A list of ‘fake’ locations for the compartmental model can also be obtained. These locations contain nothing but the node index and an x-coordinate without meaning.

[35]:

c_locs = c_tree.getEquivalentLocs()
print(c_locs[0], c_locs[1])

(0, 0.5) (1, 0.5)

Simulate the simplified model with neat.NeuronCompartmentTree

The simplified model can be simulated directly in NEURON, with the same API as neat.NeuronSimTree. To do so, the function neat.createReducedNeuronModel() converts the CompartmentTree to a neat.NeuronCompartmentTree:

[36]:

from neat import createReducedNeuronModel
c_sim_tree = createReducedNeuronModel(c_tree)

We may now check whether our simplification was successful by running the same simulation for the full and reduced models:

[37]:

initialize, run and delete the full model, set input locations as stored in `f_locs`
sim_tree.initModel(t_calibrate=100.)
sim_tree.addIClamp(f_locs[0], .01, 5., 50.)
sim_tree.addDoubleExpSynapse(f_locs[1], .2, 3., 0.)
sim_tree.setSpikeTrain(0, 0.002, [20.,22.,28.,28.5,29.,30.,31.])
sim_tree.storeLocs(f_locs, name='rec locs')
res_full = sim_tree.run(60.)
sim_tree.deleteModel()

initialize and run the simplified model, set input locations as stored in `c_locs`
c_sim_tree.initModel(t_calibrate=100.)
c_sim_tree.addIClamp(c_locs[0], 0.01, 5., 50.)
c_sim_tree.addDoubleExpSynapse(c_locs[1], .2, 3., 0.)
c_sim_tree.setSpikeTrain(0, 0.002, [20.,22.,28.,28.5,29.,30.,31.])
c_sim_tree.storeLocs(c_locs, name='rec locs')
res_reduced = c_sim_tree.run(60.)
print the hoc topology of the reduced model
from neuron import h
h.topology()
delete the reduced model
c_sim_tree.deleteModel()

|-| 0(0-1)
 `| 1(0-1)

We compare somatic and dendritic voltages in both models:

[38]:

pl.plot(res_full['t'], res_full['v_m'][0], c='DarkGrey', label='full')
pl.plot(res_full['t'], res_full['v_m'][1], c='DarkGrey')
pl.plot(res_reduced['t'], res_reduced['v_m'][0], 'r--', lw=1.6, label='reduced, soma')
pl.plot(res_reduced['t'], res_reduced['v_m'][1], 'b--', lw=1.6, label='reduced, dend')
pl.legend(loc=0)
pl.show()

[image: ../_images/_tutorials_models_82_0.png]

Compute the separation of variables expansion with neat.SOVTree

The separation of variables expansion [-@Major1993] computes impedance kernels as superpositions of exponentials:

\begin{align}
z_{x^{\prime}x}(t) = \sum_{k=0}^{\infty} e^{-\frac{t}{\tau_k}} \, \phi_k(x^{\prime}) \, \phi_k(x)
\end{align}
which can be used to compute PSP responses to current inputs analytically, or even to simulate the neuron model as:

\begin{align}
\dot{y}_k(t) &= -\frac{y_k(t)}{\tau_k} + \int \mathrm{d}x \, \phi_k(x) \, I(x, t, V(x,t)) \hspace{4mm} \forall k \\
V(x,t) &= \sum_k \phi_k(x) \, y_k(t),
\end{align}
with \(I(x,t, V(x,t))\) the possibly voltage-dependent input current at location \(x\) along the dendrite and at time \(t\).

neat.SOVTree implements Major’s algorithm [-@Major1993] to compute the SOV solution. A neat.SOVTree is initialized like any other neat tree:

[1]:

import numpy as np
import matplotlib.pyplot as pl

from neat import SOVTree

load the tree
sov_tree = SOVTree(file_n='morph/N19ttwt.CNG.swc')
capacitane 1 uF/cm^2 and axial resistance 0.0001 MOhm*cm
sov_tree.setPhysiology(1., 0.0001)
fit the leak conductance to have an equilibrium potential of -75. and a
uniform membrane time scale of 10 ms
sov_tree.fitLeakCurrent(-75., 10.)
set the computational tree
sov_tree.setCompTree()

Then, the exponential time-scales \(\tau_k\) are computed as the zeros of the transcendental equation.

[2]:

construct transcendental equation
sov_tree.calcSOVEquations(maxspace_freq=100.)

We may then obtain the exponential time-scales \(\tau_k\) and associated spatial functions \(\phi_k(x_i)\), the latter evaluated at a set of locations \((x_1, \hdots, x_N)\). In this case, we will only plot the spatial modes, so we define a set of locations that is good for plotting spatial functions defined on the morphology (‘xaxis’).

[3]:

creates and stores (under the name 'xaxis') a set of locations on the morphology good for plotting
sov_tree.makeXAxis()

To asses the importance of a mode for the voltage dynamics at a given set of locations, we use the metric

\begin{align}
\text{Imp}_k = \sqrt{\tau_k \left(\sum_{i=0}^N \sum_{j=0}^N \phi_k(x_i) \, \phi_k(x_j) \right) }
\end{align}
We may then obtain the most important SOV terms at the set of locations stored under ‘xaxis’:

[4]:

alphas, phimat = sov_tree.getSOVMatrices('xaxis')

We can also define a cutoff threshold. Modes with relative importance below this threshold (\(\text{Imp}_k < \epsilon \, \text{Imp}_0\)) are not returned

[5]:

alphas_, phimat_ = sov_tree.getImportantModes(locarg='xaxis', eps=1e-3)
compare the size of alphas with the size of alphas_
print('Number of SOV terms in alphas =', alphas.shape[0])
print('Number of SOV terms in alphas_ =', alphas_.shape[0])

Number of SOV terms in alphas = 120
Number of SOV terms in alphas_ = 37

Note furthermore that this function returns the reciprocals of the timescales \(\alpha_k = \frac{1}{\tau_k}\), in kHz. The time-scales can be obtained in ms as:

[6]:

print('tau_k (k=0,...36) =\n',1./alphas_)

tau_k (k=0,...36) =
 [10. 1.17930791 0.87175063 0.74621091 0.61592058 0.55352705
 0.51001138 0.46019773 0.33093398 0.22778449 0.18268101 0.1810243
 0.15825737 0.1555517 0.09367747 0.08063473 0.07379258 0.06509325
 0.05731892 0.0533252 0.04952842 0.04547815 0.03806818 0.03576512
 0.02960574 0.0277235 0.02652117 0.02224916 0.02059959 0.02033902
 0.02004149 0.0193636 0.01900246 0.01658901 0.01623951 0.01467919
 0.01362795]

The spatial functions are returned as the second argument of SOVTree.getSOVMatrics() or SOVTree.getImportantModes(). The first dimension signifies the index of the SOV term and the second dimension the index of the location.

[7]:

print('`phimat` is evaluated for %d SOV terms and at %d locations, stored under \'xaxis\''%phimat_.shape)

`phimat` is evaluated for 37 SOV terms and at 223 locations, stored under 'xaxis'

Finally, we may plot these spatial functions by unraveling the morphology on a one-dimensional axis.

[8]:

pl.figure(figsize=(12,6))
colours = list(pl.rcParams['axes.prop_cycle'].by_key()['color'])
plot the morphology
ax0 = pl.subplot(121)
sov_tree.setNodeColors()
sov_tree.plot2DMorphology(ax0, cs='x_color', cmap=pl.get_cmap('jet'), plotargs={'lw':3})
plot the spatial mode functions
ax1 = pl.subplot(122)
for ii, phi in enumerate(phimat_[:10]):
 sov_tree.plot1D(ax1, phi.real, c=colours[ii%len(colours)],
 label=r'$\tau_'+'{%d} = %.5f$ ms'%(ii, 1./alphas_[ii].real))
sov_tree.colorXAxis(ax1, cmap=pl.get_cmap('jet'))
ax1.legend(loc='lower center', ncol=3, bbox_to_anchor=(.5,.9))

pl.tight_layout()
pl.show()

[image: ../_images/_tutorials_separationofvariables_16_0.png]

Reference

	Release

	0.9.1

	Date

	Mar 25, 2021

	Abstract Trees
	Basic tree

	Compartment Tree

	Neural Evaluation Tree

	Simulate reduced compartmental models

	Morphological Trees
	Morphology Tree

	Physiology Tree

	Separation of Variables Tree

	Greens Tree

	Simulate NEURON models

	Other Classes
	Fitting reduced models

	Defining ion channels

	Neural evaluation tree simulator

	Compute Fourrier transforms

Abstract Trees

Basic tree

	
class STree(root=None)

	A simple tree for use with a simple Node (neat.SNode).

Generic implementation of a tree structure as a linked list extended with
some convenience functions

	Parameters

	root (neat.SNode, optional) – The root of the tree, default is None which creates an empty tree

	Variables

	root (neat.SNode) – The root of the tree

	STree.__getitem__(index, **kwargs)

	Returns the node with given index, if no such node is in the tree, None is returned.

	STree.__len__([node])

	Return the number of nodes in the tree.

	STree.__iter__([node])

	Iterate over the nodes in the subtree of the given node.

	STree.__str__([node])

	Generate a string of the subtree of the given node.

	STree.__copy__([new_tree])

	Fill the new_tree with it’s corresponding nodes in the same structure as self, and copies all node variables that both tree classes have in common

	STree.checkOrdered()

	Check if the indices of the tree are number in the same order as they appear in the iterator

	STree.getNodes([recompute_flag])

	Build a list of all the nodes in the tree

	STree.nodes

	Build a list of all the nodes in the tree

	STree.gatherNodes(node)

	Build a list of all the nodes in the subtree of the provided node

	STree.getLeafs([recompute_flag])

	Get all leaf nodes in the tree.

	STree.leafs

	Get all leaf nodes in the tree.

	STree.isLeaf(node)

	Check if input node is a leaf of the tree

	STree.root

	

	STree.isRoot(node)

	Check if input node is root of the tree.

	STree.addNodeWithParentFromIndex(node_index, …)

	Create a node with the given index and add it to the tree under a specific parent node.

	STree.addNodeWithParent(node, pnode)

	Add a node to the tree under a specific parent node

	STree.softRemoveNode(node)

	Remove a node and its subtree from the tree by deleting the reference to it in its parent.

	STree.removeNode(node)

	Remove a node as well as its subtree from the tree

	STree.removeSingleNode(node)

	Remove a single node from the tree.

	STree.insertNode(node, pnode[, pcnodes])

	Insert a node in the tree as a child of a specified parent.

	STree.resetIndices([n])

	Resets the indices in the order they appear in a depth-first iteration

	STree.getSubTree(node[, new_tree])

	Get the subtree of the specified node.

	STree.depthOfNode(node)

	compute the depth of the node (number of edges between node and root)

	STree.degreeOfNode(node)

	Compute the degree (number of leafs in its subtree) of a node.

	STree.orderOfNode(node)

	Compute the order (number of bifurcations from the root) of a node.

	STree.pathToRoot(node)

	Return the path from a given node to the root

	STree.pathBetweenNodes(from_node, to_node)

	Inclusive path from from_node to to_node.

	STree.pathBetweenNodesDepthFirst(from_node, …)

	Inclusive path from from_node to to_node, ginven in a depth- first ordering.

	STree.getNodesInSubtree(ref_node[, subtree_root])

	Returns the nodes in the subtree that contains the given reference nodes and has the given subtree root as root.

	STree.sisterLeafs(node)

	Find the leafs that are in the subtree of the nearest bifurcation node up from the input node.

	STree.upBifurcationNode(node[, cnode])

	Find the nearest bifurcation node up (towards root) from the input node.

	STree.downBifurcationNode(node)

	Find the nearest bifurcation node down (towards leafs) from the input node.

	STree.getBifurcationNodes(nodes)

	Get the bifurcation nodes in bewteen the provided input nodes

	STree.getNearestNeighbours(node, nodes)

	Find the nearest neighbours of node in nodes.

	STree.__copy__([new_tree])

	Fill the new_tree with it’s corresponding nodes in the same structure as self, and copies all node variables that both tree classes have in common

	
class SNode(index)

	Simple Node for use with a simple Tree (neat.STree)

	Parameters

	index (int) – index of the node

	Variables

	
	index (int) – index of the node

	parent_node (neat.SNode or None) – parent of node, None means node is root

	child_nodes (list of neat.SNode) – child nodes of self, empty list means node is leaf

	content (dict) – arbitrary items can be stored at the node

Compartment Tree

	
class CompartmentTree(root=None)

	Abstract tree that implements physiological parameters for reduced
compartmental models. Also implements the matrix algebra to fit physiological
parameters to impedance matrices

	CompartmentTree.addCurrent(channel, e_rev)

	Add an ion channel current to the tree

	CompartmentTree.setExpansionPoints(…)

	Set the choice for the state variables of the ion channel around which to linearize.

	CompartmentTree.setEEq(e_eq[, indexing])

	Set the equilibrium potential at all nodes on the compartment tree

	CompartmentTree.getEEq([indexing])

	Get the equilibrium potentials at each node.

	CompartmentTree.fitEL()

	Fit the leak reversal potential to obtain the stored equilibirum potentials as resting membrane potential

	CompartmentTree.getEquivalentLocs()

	Get list of fake locations in the same order as original list of locations to which the compartment tree was fitted.

	CompartmentTree.calcImpedanceMatrix([freqs, …])

	Constructs the impedance matrix of the model for each frequency provided in freqs.

	CompartmentTree.calcConductanceMatrix([indexing])

	Constructs the conductance matrix of the model

	CompartmentTree.calcSystemMatrix([freqs, …])

	Constructs the matrix of conductance and capacitance terms of the model for each frequency provided in freqs.

	CompartmentTree.calcEigenvalues([indexing])

	Calculates the eigenvalues and eigenvectors of the passive system

	CompartmentTree.computeGMC(z_mat_arg[, …])

	Fit the models’ membrane and coupling conductances to a given steady state impedance matrix.

	CompartmentTree.computeGChanFromImpedance(…)

	Fit the conductances of multiple channels from the given impedance matrices, or store the feature matrix and target vector for later use (see action).

	CompartmentTree.computeGSingleChanFromImpedance(…)

	Fit the conductances of a single channel from the given impedance matrices, or store the feature matrix and target vector for later use (see action).

	CompartmentTree.computeC(alphas, phimat[, …])

	Fit the capacitances to the eigenmode expansion

	CompartmentTree.resetFitData()

	Delete all stored feature matrices and and target vectors.

	CompartmentTree.runFit()

	Run a linear least squares fit for the conductances concentration mechanisms.

	CompartmentTree.computeFakeGeometry([…])

	Computes a fake geometry so that the neuron model is a reduced compurtmental model

	CompartmentTree.plotDendrogram(ax[, …])

	Generate a dendrogram of the NET

	
class CompartmentNode(index, loc_ind=None, ca=1.0, g_c=0.0, g_l=0.01, e_eq=- 75.0)

	Implements a node for CompartmentTree

	Variables

	
	ca (float) – capacitance of the compartment (uF)

	g_l (float) – leak conductance at the compartment (uS)

	g_c (float) – Coupling conductance of compartment with parent compartment (uS).
Ignore if node is the root

	e_eq (float) – equilibrium potential at the compartment

	currents (dict {str: [g_bar, e_rev]}) – dictionary with as keys the channel names and as elements lists of length
two with contain the maximal conductance (uS) and the channels’
reversal potential in (mV)

	concmechs (dict {str: neat.channels.concmechs.ConcMech}) – dictionary with as keys the ion names and as values the concentration
mechanisms governing the concentration of each ion channel

	expansion_points (dict {str: np.ndarray}) – dictionary with as keys the channel names and as elements the state
variables of the ion channel around which to compute the linearizations

Neural Evaluation Tree

	
class NET(root=None)

	Abstract tree class that implements the Neural Evaluation Tree
(Wybo et al., 2019), representing the spatial voltage as a number of voltage
components present at different spatial scales.

	NET.getLocInds([sroot])

	Get the indices of the locations a subtree integrates

	NET.getLeafLocNode(loc_ind)

	Get the node for which loc_ind is a new location

	NET.setNewLocInds()

	Set the new location indices in a tree

	NET.getReducedTree(loc_inds[, indexing])

	Construct a reduced tree where only the locations index by ``loc_inds’’ are retained

	NET.calcTotalImpedance(node)

	Compute the total impedance associated with a node.

	NET.calcIZ(loc_inds)

	compute I_Z between any pair of locations in loc_inds

	NET.calcIZMatrix()

	compute the Iz matrix for all locations present in the tree

	NET.calcImpedanceMatrix()

	Compute the impedance matrix approximation associated with the NET

	NET.calcImpMat()

	Compute the impedance matrix approximation associated with the NET

	NET.getCompartmentalization(Iz[, returntype])

	Returns a compartmentalization for the NET tree where each pair of compartments is separated by an Iz of at least Iz.

	NET.plotDendrogram(ax[, plotargs, …])

	Generate a dendrogram of the NET

	
class NETNode(index, loc_inds, newloc_inds=[], z_kernel=None)

	Node associated with neat.NET.

	Variables

	
	loc_inds (list of int) – The inidices of locations which the node integrates

	newloc_inds (list of int) – The locations for which the node is the most local component to integrate
them

	z_kernel (neat.Kernel) – The impedance kernel with which the node integrates inputs

	z_bar (float) – The steady state impedance associated with the impedance kernel

	
class Kernel(kernel)

	Implements a kernel as a superposition of exponentials:

\[k(t) = \sum_n c_n e^{ - a_n t}\]

Kernels can be added and subtracted, as this class overloads the __add__
and __subtract__ functions.

They can be evaluated as a function of time by calling the object with a
time array.

They can be evaluated in the Fourrier domain with Kernel.ft

	Parameters

	kernel (dict, float, neat.Kernel, tuple or list) – If dict, has the form {‘a’: np.array, ‘c’: np.array}.
If float, sets c single exponential prefactor and assumes a is 1 kHz.
If neat.Kernel, copies the object.
If tuple or list, sets ‘a’ as first element and ‘c’ as last element.

	Variables

	
	a (np.array of float or complex) – The exponential coefficients (kHz)

	c (np.array of float or complex) – The exponential prefactors

	Kernel.k_bar

	The total surface under the kernel

	Kernel.t(t_arr)

	Evaluates the kernel in the time domain

	Kernel.ft(s_arr)

	Evaluates the kernel in the Fourrier domain

Simulate reduced compartmental models

	
class NeuronCompartmentTree(t_calibrate=0.0, dt=0.025, v_init=- 75.0)

	Subclass of NeuronSimTree where sections are defined so that they are
effectively single compartments. Should be created from a
neat.CompartmentTree using neat.createReducedCompartmentModel()

	
createReducedNeuronModel(ctree, fake_c_m=1.0, fake_r_a=9.999999999999999e-05, method=2)

	Creates a neat.NeuronCompartmentTree to simulate reduced compartmentment
models from a neat.CompartmentTree.

	Parameters

	ctree (neat.CompartmentTree) – The tree containing the parameters of the reduced compartmental model
to be simulated

	Returns

	

	Return type

	neat.NeuronCompartmentTree

Notes

The function ctree.getEquivalentLocs() can be used to obtain ‘fake’
locations corresponding to each compartment, which in turn can be used to
insert hoc point process at the compartments using the same functions
definitions as for as for a morphological neat.NeuronSimTree

Morphological Trees

Morphology Tree

	
class MorphTree(file_n=None, types=[1, 3, 4])

	Subclass of simple tree that implements neuronal morphologies. Reads in
trees from ‘.swc’ files (http://neuromorpho.org/).

Neural morphologies are assumed to follow the three-point soma conventions.
Internally however, the soma is represented as a sphere. Hence nodes with
indices 2 and 3 do not represent anything and are skipped in iterations and
getters.

Can also store a simplified version of the original tree, where only nodes
are retained that should hold computational parameters - the root, the
bifurcation nodes and the leafs at least, although the user can also
specify additional nodes. One tree is set as primary by changing the
treetype attribute (select ‘original’ for the original morphology and
‘computational’ for the computational morphology). Lookup operations will
often use the primary tree. Using nodes from the other tree for lookup
operations is unsafe and should be avoided, it is better to set the proper
tree to primary first.

For computational efficiency, it is possible to store sets of locations on
the morphology, under user-specified names. These sets are stored as
lists of neat.MorphLoc, and associated arrays are stored that contain the
corresponding node indices of the locations, their x-coordinates, their
distances to the soma and their distances to the nearest bifurcation in the
‘up’-direction

	Parameters

	
	file_n (str (optional)) – the file name of the morphology file. Assumed to follow the ‘.swc’ format.
Default is None, which initialized an empty tree

	types (list of int (optional)) – The list of node types to be included. As per the ‘.swc’ convention,
1 is soma, 2 is axon, 3 is basal dendrite and 4 apical
dendrite. Default is [1,3,4].

	Variables

	
	root (neat.MorphNode instance) – The root of the tree.

	locs (dict {str: list of neat.MorphLoc}) – Stored sets of locations, key is the user-specified the name of the
set of locations. Initialized as empty dict.

	nids (dict {str: np.array of int}) – Node indices of locations Initialized as empty dict.

	xs (dict {str: np.array of float}) – x-coordinates of locations Initialized as empty dict.

	d2s (dict {str: np.array of float}) – distances to soma of locations Initialized as empty dict.

	d2b (dict {str: np.array of float}) – distances to nearest bifurcation in ‘up’ direction of locations.
Initialized as empty dict.

Read a morphology from an SWC file

	MorphTree.readSWCTreeFromFile(file_n[, types])

	Non-specific for a “tree data structure” Read and load a morphology from an SWC file and parse it into an neat.MorphTree object.

	MorphTree.determineSomaType(file_n)

	Determine the soma type used in the SWC file.

	MorphTree.__getitem__(index[, skip_inds])

	Returns the node with given index, if no such node is in the tree, None is returned.

	MorphTree.__iter__([node, skip_inds])

	Overloaded iterator from parent class that avoids iterating over the nodes with index 2 and 3

Get specific nodes or sets of nodes from the tree.

	MorphTree.root

	Returns the root of the original or the computational tree, depending on which treetype is active.

	MorphTree.getNodes([recompute_flag, skip_inds])

	Overloads the parent function to allow skipping nodes with certain indices and to return the nodes associated with the corresponding treetype.

	MorphTree.nodes

	Overloads the parent function to allow skipping nodes with certain indices and to return the nodes associated with the corresponding treetype.

	MorphTree.getLeafs([recompute_flag])

	Overloads the getLeafs of the parent class to return the leafs in the current treetype.

	MorphTree.leafs

	Overloads the getLeafs of the parent class to return the leafs in the current treetype.

	MorphTree.getNodesInBasalSubtree()

	Return the nodes associated with the basal subtree

	MorphTree.getNodesInApicalSubtree()

	Return the nodes associated with the apical subtree

	MorphTree.getNodesInAxonalSubtree()

	Return the nodes associated with the apical subtree

	MorphTree._convertNodeArgToNodes(node_arg)

	Converts a node argument to a list of nodes.

Relating to the computational tree.

	MorphTree.setTreetype(treetype)

	Set the active tree

	MorphTree.treetype

	

	MorphTree.readSWCTreeFromFile(file_n[, types])

	Non-specific for a “tree data structure” Read and load a morphology from an SWC file and parse it into an neat.MorphTree object.

	MorphTree.setCompTree([compnodes, …])

	Sets the nodes that contain computational parameters.

	MorphTree._evaluateCompCriteria(node[, eps, …])

	Return True if relative difference between node radius and parent node raidus is larger than margin eps, or if the node is the root or bifurcation node.

	MorphTree.removeCompTree()

	Removes the computational tree

Storing locations, interacting with stored locations and distributing
locations

	MorphTree._convertLocArgToLocs(locarg)

	Converts locations argument to list of neat.MorphLoc.

	MorphTree.storeLocs(*args, **kwargs)

	Store locations under a specified name

	MorphTree.addLoc(*args, **kwargs)

	Add location to set of locations of given name

	MorphTree.clearLocs()

	Remove all set of locs stored in the tree

	MorphTree.removeLocs(name)

	Remove a set of locations of a given name

	MorphTree._tryName(name)

	Tests if the name is in use.

	MorphTree.getLocs(name)

	Returns a set of locations of a specified name

	MorphTree.getNodeIndices(name)

	Returns an array of node indices of locations of a specified name

	MorphTree.getXCoords(name)

	Returns an array of x-values of locations of a specified name

	MorphTree.getLocindsOnNode(name, node)

	Returns a list of the indices of locations in the list of a given name that are on a the input node, ordered for increasing x

	MorphTree.getLocindsOnNodes(name, node_arg)

	Returns a list of the indices of locations in the list of a given name that are on one of the nodes specified in the node list.

	MorphTree.getLocindsOnPath(name, node0, node1)

	Returns a list of the indices of locations in the list of a given name that are on the given path.

	MorphTree.getNearestLocinds(locs, name[, …])

	For each location in the input location list, find the index of the closest location in a set of locations stored under a given name.

	MorphTree.getNearestNeighbourLocinds(loc, locarg)

	Search nearest neighbours to loc in locarg.

	MorphTree.getLeafLocinds(name[, recompute])

	Find the indices in the desire location list that are ‘leafs’, i.e. locations for which no other location exist that is farther from the root.

	MorphTree.distancesToSoma(locarg[, recompute])

	Compute the distance of each location in a given set to the soma

	MorphTree.distancesToBifurcation(name[, …])

	Compute the distance of each location to the nearest bifurcation in the ‘up’ direction (towards root)

	MorphTree.distributeLocsOnNodes(d2s[, …])

	Distributes locs on a given set of nodes at specified distances from the soma.

	MorphTree.distributeLocsUniform(*args, **kwargs)

	Distributes locations as uniform as possible, i.e. for a given distance between locations dx, locations are distributed equidistantly on each given node in the computational tree and their amount is computed so that the distance in between them is as close to dx as possible.

	MorphTree.distributeLocsRandom(num[, dx, …])

	Returns a list of input locations randomly distributed on the tree

	MorphTree.extendWithBifurcationLocs(loc_arg)

	Extends input loc_arg with the intermediate bifurcations.

	MorphTree.uniqueLocs(loc_arg[, name])

	Gets the unique locations in the provided locs

	MorphTree.pathLength(loc1, loc2[, …])

	Find the length of the direct path between loc1 and loc2

Plotting on a 1D axis.

	MorphTree.makeXAxis([dx, node_arg, loc_arg])

	Create a set of locs suitable for serving as the x-axis for 1D plotting.

	MorphTree.setNodeColors([startnode])

	Set the color code for the nodes for 1D plotting

	MorphTree.getXValues(locs)

	Get the corresponding location on the x-axis of the input locations

	MorphTree.plot1D(ax, parr, *args, **kwargs)

	Plot an array where each element corresponds to the matching location on the x-axis with a depth-first ordering on a 1D plot

	MorphTree.plotTrueD2S(ax, parr[, cmap])

	Plot an array where each element corresponds to the matching location in the x-axis location list.

	MorphTree.colorXAxis(ax, cmap[, …])

	Color the x-axis of a plot according to the morphology.

Plotting the morphology in 2D.

	MorphTree.plot2DMorphology(ax[, node_arg, …])

	Plot the morphology projected on the x,y-plane

	MorphTree.plotMorphologyInteractive([…])

	Show the morphology either in 3d or projected on the x,y-plane.

Creating new trees from the existing tree.

	MorphTree.createNewTree(*args, **kwargs)

	Creates a new tree where the locs of a given ‘name’ are now the nodes.

	MorphTree.createCompartmentTree(*args, **kwargs)

	Creates a new compartment tree where the provided set of locations correspond to the nodes.

	MorphTree.__copy__([new_tree])

	Fill the new_tree with it’s corresponding nodes in the same structure as self, and copies all node variables that both tree classes have in common

	
class MorphNode(index, p3d=None)

	Node associated with neat.MorphTree. Stores the geometrical information
associated with a point on the tree morphology

	Variables

	
	xyz (numpy.array of floats) – The xyz-coordinates associated with the node (um)

	R (float) – The radius of the node (um)

	swc_type (int) – The type of node, according to the .swc file format convention:
1 is dendrites, 2 is axon, 3 is basal dendrite and 4
is apical dendrite.

	L (float) – The length of the node (um)

	MorphNode.setP3D(xyz, R, swc_type)

	Set the 3d parameters of the node

	MorphNode.child_nodes

	Get the child_nodes of this node.

	
class MorphLoc(loc, reftree, set_as_comploc=False)

	Stores a location on the morphology. The location is initialized starting
from a node and x-value on the real morphology. The location is also be
stored in the coordinates of the computational morphology. To toggle between
coordinates, the class stores a reference to the morphology tree on which
the location is defined, and returns either the original coordinate or the
coordinate on the computational tree, depending on which tree is active.

Initialized based on either a tuple or a dict where one entry specifies the
node index and the other entry the x-coordinate specifying the location
between parent node (x=0) or the node indicated by the index (x=1), or on
a neat.MorphLoc.

	Parameters

	
	loc (tuple or dict or neat.MorphLoc) – if tuple: (node index, x-value)
if dict: {‘node’: node index, ‘x’: x-value}

	reftree (neat.MorphTree) –

	set_as_comploc (bool) – if True, assumes the paremeters provided in loc are coordinates
on the computational tree. Doing this while no computational tree
has been initialized in reftree will result in an error.
Defaults to False

	Raises

	ValueError – If x-coordinate of location is not in [0,1]

Physiology Tree

	
class PhysTree(file_n=None, types=[1, 3, 4])

	Adds physiological parameters to neat.MorphTree and convenience functions
to set them across the morphology. Initialized in the same way as
neat.MorphTree

	Variables

	channel_storage (dict {str: neat.IonChannel}) – Stores the user defined ion channels present in the tree

	PhysTree.asPassiveMembrane(*args, **kwargs)

	Makes the membrane act as a passive membrane (for the nodes in node_arg), channels are assumed to add a conductance of g_max * p_open to the membrane conductance, where p_open for each node is evaluated at the equilibrium potential stored in that node

	PhysTree.setEEq(*args, **kwargs)

	Set the equilibrium potentials throughout the tree

	PhysTree.setPhysiology(*args, **kwargs)

	Set specifice membrane capacitance, axial resistance and (optionally) static point-like shunt conductances in the tree.

	PhysTree.setLeakCurrent(*args, **kwargs)

	Set the parameters of the leak current.

	PhysTree.addCurrent(*args, **kwargs)

	Adds a channel to the morphology.

	PhysTree.getChannelsInTree(*args, **kwargs)

	Returns list of strings of all channel names in the tree

	PhysTree.fitLeakCurrent(*args, **kwargs)

	Fits the leak current to fix equilibrium potential and membrane time- scale.

	PhysTree._evaluateCompCriteria(node[, eps, …])

	Return True if relative difference in any physiological parameters between node and child node is larger than margin eps.

	
class PhysNode(index, p3d=None, c_m=1.0, r_a=9.999999999999999e-05, g_shunt=0.0, e_eq=- 75.0)

	Node associated with neat.PhysTree. Stores the physiological parameters
of the cylindrical segment connecting this node with its parent node

	Variables

	
	currents (dict {str: [float,float]}) – dict with as keys the channel names and as values lists of length two
containing as first entry the channels’ conductance density (uS/cm^2)
and as second element the channels reversal (mV) (i.e.:
{name: [g_max (uS/cm^2), e_rev (mV)]})
For the leak conductance, the corresponding key is ‘L’

	concmechs (dict) – dict containing concentration mechanisms present in the segment

	c_m (float) – The sement’s specific membrane capacitance (uF/cm^2)

	r_a (float) – The segment’s axial resistance (MOhm*cm)

	g_shunt (float) – Point-like shunt conductance located at x=1 (uS)

	e_eq (float) – Segment’s equilibrium potential

Separation of Variables Tree

	
class SOVTree(file_n=None, types=[1, 3, 4])

	Class that computes the separation of variables time scales and spatial
mode functions for a given morphology and electrical parameter set. Employs
the algorithm by (Major, 1994). This three defines a special
neat.SomaSOVNode on as a derived class from neat.SOVNode as some
functions required for SOV calculation are different and thus overwritten.

The SOV calculation proceeds on the computational tree (see docstring of
neat.MorphNode). Thus it makes no sense to look for sov quantities in the
original tree.

	SOVTree.calcSOVEquations(*args, **kwargs)

	Calculate the timescales and spatial functions of the separation of variables approach, using the algorithm by (Major, 1993).

	SOVTree.getModeImportance([locarg, …])

	Gives the overal importance of the SOV modes for a certain set of locations

	SOVTree.getImportantModes([locarg, …])

	Returns the most importand eigenmodes (those whose importance is above the threshold defined by eps)

	SOVTree.calcImpedanceMatrix([locarg, …])

	Compute the impedance matrix for a set of locations

	SOVTree.constructNET([dz, dx, eps, …])

	Construct a Neural Evaluation Tree (NET) for this cell

	SOVTree.computeLinTerms(net[, sov_data, eps])

	Construct linear terms for net so that transfer impedance to soma is exactly matched

	
class SOVNode(index, p3d=None)

	Node that defines functions and stores quantities to implement separation
of variables calculation (Major, 1993)

Greens Tree

	
class GreensTree(file_n=None, types=[1, 3, 4])

	Class that computes the Green’s function in the Fourrier domain of a given
neuronal morphology (Koch, 1985). This three defines a special
neat.SomaGreensNode as a derived class from neat.GreensNode as some
functions required for Green’s function calculation are different and thus
overwritten.

The calculation proceeds on the computational tree (see docstring of
neat.MorphNode). Thus it makes no sense to look for Green’s function
related quantities in the original tree.

	Variables

	freqs (np.array of complex) – Frequencies at which impedances are evaluated [Hz]

	GreensTree.removeExpansionPoints()

	Remove expansion points from all nodes in the tree

	GreensTree.setImpedance(*args, **kwargs)

	Set the boundary impedances for each node in the tree

	GreensTree.calcZF(*args, **kwargs)

	Computes the transfer impedance between two locations for all frequencies in self.freqs.

	GreensTree.calcImpedanceMatrix(*args, **kwargs)

	Computes the impedance matrix of a given set of locations for each frequency stored in self.freqs.

	
class GreensNode(index, p3d)

	Node that stores quantities and defines functions to implement the impedance
matrix calculation based on Koch’s algorithm (Koch & Poggio, 1985).

	Variables

	expansion_points (dict {str: np.ndarray}) – Stores ion channel expansion points for this segment.

	GreensNode.setExpansionPoint(channel_name, …)

	Set the choice for the state variables of the ion channel around which to linearize.

Simulate NEURON models

	
class NeuronSimTree(file_n=None, types=[1, 3, 4], factor_lambda=1.0, t_calibrate=0.0, dt=0.025, v_init=- 75.0)

	Tree class to define NEURON (Carnevale & Hines, 2004) based on neat.PhysTree.

	Variables

	
	sections (dict of hoc sections) – Storage for hoc sections. Keys are node indices.

	shunts (list of hoc mechanisms) – Storage container for shunts

	syns (list of hoc mechanisms) – Storage container for synapses

	iclamps (list of hoc mechanisms) – Storage container for current clamps

	vclamps (lis of hoc mechanisms) – Storage container for voltage clamps

	vecstims (list of hoc mechanisms) – Storage container for vecstim objects

	netcons (list of hoc mechanisms) – Storage container for netcon objects

	vecs (list of hoc vectors) – Storage container for hoc spike vectors

	dt (float) – timestep of the simulator [ms]

	t_calibrate (float) – Time for the model to equilibrate``[ms]``. Not counted as part of the
simulation.

	factor_lambda (int or float) – If int, the number of segments per section. If float, multiplies the
number of segments given by the standard lambda rule (Carnevale, 2004)
to give the number of compartments simulated (default value 1. gives
the number given by the lambda rule)

	v_init (float) – The initial voltage at which the model is initialized [mV]

	NeuronSimTree can be extended easily with custom point process mechanisms. (A) –

	make sure that you store the point process in an existing appropriate (Just) –

	container or in a custom storage container, since if all references (storage) –

	the hocobject disappear, the object itself will be deleted as well. (to) –

	code-block: (.) – python: class CustomSimTree(NeuronSimTree):
def addCustomPointProcessMech(self, loc, **kwargs):

loc = MorphLoc(loc, self)

create the point process
pp = h.custom_point_process(self.sections[loc[‘node’]](loc[‘x’]))
pp.arg1 = kwargs[‘arg1’]
pp.arg2 = kwargs[‘arg2’]
…

self.storage_container_for_point_process.append(pp)

	you define a custom storage container, make sure that you overwrite the (If) –

	and deleteModel() functions to make sure it is created and (`__init__()`) –

	properly. (deleted) –

	NeuronSimTree.initModel([dt, t_calibrate, …])

	Initialize hoc-objects to simulate the neuron model implemented by this tree.

	NeuronSimTree.deleteModel()

	Delete all stored hoc-objects

	NeuronSimTree.addShunt(loc, g, e_r)

	Adds a static conductance at a given location

	NeuronSimTree.addDoubleExpCurrent(loc, tau1, …)

	Adds a double exponential input current at a given location

	NeuronSimTree.addExpSynapse(loc, tau, e_r)

	Adds a single-exponential conductance-based synapse

	NeuronSimTree.addDoubleExpSynapse(loc, tau1, …)

	Adds a double-exponential conductance-based synapse

	NeuronSimTree.addNMDASynapse(loc, tau, tau_nmda)

	Adds a single-exponential conductance-based synapse with an AMPA and an NMDA component

	NeuronSimTree.addDoubleExpNMDASynapse(loc, …)

	Adds a double-exponential conductance-based synapse with an AMPA and an NMDA component

	NeuronSimTree.addIClamp(loc, amp, delay, dur)

	Injects a DC current step at a given lcoation

	NeuronSimTree.addSinClamp(loc, amp, delay, …)

	Injects a sinusoidal current at a given lcoation

	NeuronSimTree.addOUClamp(loc, tau, mean, …)

	Injects a Ornstein-Uhlenbeck current at a given lcoation

	NeuronSimTree.addOUconductance(loc, tau, …)

	Injects a Ornstein-Uhlenbeck conductance at a given location

	NeuronSimTree.addOUReversal(loc, tau, mean, …)

	

	NeuronSimTree.addVClamp(loc, e_c, dur)

	Adds a voltage clamp at a given location

	NeuronSimTree.setSpikeTrain(syn_index, …)

	Each hoc point process that receive spikes through should by appended to the synapse stack (stored under the list self.syns).

	NeuronSimTree.run(t_max[, downsample, …])

	Run the NEURON simulation.

	NeuronSimTree.calcEEq([t_dur, set_e_eq])

	Compute the equilibrium potentials in the middle (x=0.5) of each node.

Other Classes

Fitting reduced models

	
class CompartmentFitter(phys_tree, e_hs=array([- 75.0, - 55.0, - 35.0, - 15.0]), freqs=array([0.0]), name='dont save', path='')

	Helper class to streamline fitting reduced compartmental models

	Variables

	
	tree (neat.PhysTree()) – The full tree based on which reductions are made

	e_hs (np.array of float) – The holding potentials for which quasi active expansions are computed

	freqs (np.array of float or complex (default is np.array([0.]))) – The frequencies at which impedance matrices are evaluated

	name (str (default 'dont save')) – name of files in which intermediate trees required for the fit are
stored. Details about what is in the actual pickle
files are appended as a suffix to name. Default is to not store
intermediate files.

	path (str (default '')) – specify a path under which the intermediate files are saved (only if
name is specified). Default is empty string, which means that
intermediate files are stored in the working directory.

To implement the default methodology.

	CompartmentFitter.setCTree(loc_arg[, …])

	Store an initial neat.CompartmentTree, providing a tree structure scaffold for the fit for a given set of locations.

	CompartmentFitter.fitModel(loc_arg[, …])

	Runs the full fit for a set of locations (the location are automatically extended with the bifurcation locs)

To check the faithfullness of the passive reduction, the following functions
implement vizualisation of impedance kernels.

	CompartmentFitter.checkPassive(loc_arg[, …])

	Checks the impedance kernels of the passive model.

	CompartmentFitter.getKernels([recompute, pprint])

	Returns the impedance kernels as a double nested list of “neat.Kernel”.

	CompartmentFitter.plotKernels([alphas, …])

	Plots the impedance kernels.

Individual fit functions.

	CompartmentFitter.createTreeGF([channel_names])

	Create a FitTreeGF copy of the old tree, but only with the channels in channel_names.

	CompartmentFitter.createTreeSOV([eps])

	Create a SOVTree copy of the old tree

	CompartmentFitter.fitPassiveLeak([…])

	Fit leak only.

	CompartmentFitter.fitPassive([…])

	Fit the steady state passive model, consisting only of leak and coupling conductances, but ensure that the coupling conductances takes the passive opening of all channels into account

	CompartmentFitter.evalChannel(channel_name)

	Evaluate the impedance matrix for the model restricted to a single ion channel type.

	CompartmentFitter.fitChannels([recompute, …])

	Fit the active ion channel parameters

	CompartmentFitter.fitCapacitance([inds, …])

	Fit the capacitances of the model to the largest SOV time scale

	CompartmentFitter.setEEq([t_max, dt, …])

	Set equilibrium potentials, measured from neuron simulation.

	CompartmentFitter.getEEq(e_eqs_type, **kwargs)

	Get equilibrium potentials.

	CompartmentFitter.fitEEq(**kwargs)

	Fits the leak potentials of the reduced model to yield the same equilibrium potentials as the full model

	CompartmentFitter.fitSynRescale(c_locarg, …)

	Computes the rescaled conductances when synapses are moved to compartment locations, assuming a given average conductance for each synapse.

Defining ion channels

	
class IonChannel

	Base ion channel class that implements linearization and code generation for
NEURON (.mod-files) and C++.

Userdefined ion channels should inherit from this class and implement the
define() function, where the specific attributes of the ion channel are set.

The ion channel current is of the form

\[i_{chan} = \overline{g} \, p_o(x_1, ... , x_n) \, (e - v)\]

where \(p_o\) is the open probability defined as a function of a number of
state variables. State variables evolve according to

\[\dot{x}_i = f_i(x_i, v, c_1, ..., c_k)\]

with \(c_1, ..., c_n\) the (optional) set of concentrations the ion channel
depends on. There are two canonical ways to define \(f_i\), either based on
reaction rates \(\alpha\) and \(\beta\):

\[\dot{x}_i = \alpha_i(v) \, (1 - x_i) - \beta_i(v) \, x_i,\]

or based on an asymptotic value \(x_i^{\infty}\) and time-scale \(\tau_i\)

\[\dot{x}_i = \frac{x_i^{\infty}(v) - x_i}{\tau_i(v)}.\]

IonChannel accepts handles either description. For the former description,
dicts self.alpha and self.beta must be defined with as keys the names
of every state variable in the open probability. Similarly, for the latter
description, dicts self.tauinf and self.varinf must be defined with as
keys the name of every state variable.

The user must define the attributes p_open, and either alpha and
beta or tauinf and varinf in the define() function. The other
attributes ion, conc, q10, temp, and e are optional.

	Parameters

	
	p_open (str) – The open probability of the ion channel.

	alpha (dict {str: str}) – dictionary of the rate function for each state variables. Keys must
correspond to the name of every state variable in p_open, values must
be formulas written as strings with v and possible ion as variabels

	beta (dict {str: str}) – dictionary of the rate function for each state variables. Keys must
correspond to the name of every state variable in p_open, values must
be formulas written as strings with v and possible ion as variabels

	tauinf (dict {str: str}) – state variable time scale and asymptotic activation level. Keys must
correspond to the name of every state variable in p_open, values must
be formulas written as strings with v and possible ion as variabels

	varinf (dict {str: str}) – state variable time scale and asymptotic activation level. Keys must
correspond to the name of every state variable in p_open, values must
be formulas written as strings with v and possible ion as variabels

	ion (str ('na', 'ca', 'k' or ''), optional) – The ion to which the ion channel is permeable

	conc (set of str (containing 'na', 'ca', 'k') or dict of {str: float}) – The concentrations the ion channel activation depends on. Can be a set
of ions or a dict with the ions as keys and default values as float.

	q10 (str, optional) – Temperature dependence of the state variable rate functions. May be a
float or a string convertible to a sympy expression containing the
temp parameter (temperature in [deg C]). This factor divides the
time-scales :math:` au_i(v)` of the ion channel. If not given, default
is 1.

	temp (float, optional) – The temperature at which the ion channel is evaluated. Can be modified
after initializiation by calling
IonChannel.setDefaultParams(temp=new_temperature). If not given, the
evaluates self.q10 at the default temperature of 36 degC.

	e (float, optional) – Reversal of the ion channel in [mV]. functions that need it allow
the default value to be overwritten with a keyword argument. If nothing
is provided, will take a default reversal for self.ion (which is
-85 mV for ‘K’, 50 mV for ‘Na’ and 50 mV for ‘Ca’). If no ion is
provided, errors will occur if functions that need e are called
without specifying the value as a keyword argument.

Examples

>>> class Na_Ta(IonChannel):
>>> def define(self):
>>> # from (Colbert and Pan, 2002), Used in (Hay, 2011)
>>> self.ion = 'na'
>>> # concentrations the ion channel depends on
>>> self.conc = {}
>>> # define channel open probability
>>> self.p_open = 'h * m ** 3'
>>> # define activation functions
>>> self.alpha, self.beta = {}, {}
>>> self.alpha['m'] = '0.182 * (v + 38.) / (1. - exp(-(v + 38.) / 6.))' # 1/ms
>>> self.beta['m'] = '-0.124 * (v + 38.) / (1. - exp((v + 38.) / 6.))' # 1/ms
>>> self.alpha['h'] = '-0.015 * (v + 66.) / (1. - exp((v + 66.) / 6.))' # 1/ms
>>> self.beta['h'] = '0.015 * (v + 66.) / (1. - exp(-(v + 66.) / 6.))' # 1/ms
>>> # temperature factor for reaction rates
>>> self.q10 = '2.3^((temp - 23.)/10.)'

	IonChannel.setDefaultParams(**kwargs)

	**kwargs

	IonChannel.computePOpen(v, **kwargs)

	Compute the open probability of the ion channel

	IonChannel.computeDerivatives(v, **kwargs)

	Compute: (i) the derivatives of the open probability to the state variables (ii) The derivatives of state functions to the voltage (iii) The derivatives of state functions to the state variables

	IonChannel.computeDerivativesConc(v, **kwargs)

	Compute the derivatives of the state functions to the concentrations

	IonChannel.computeVarinf(v)

	Compute the asymptotic values for the state variables at a given activation level

	IonChannel.computeTauinf(v)

	Compute the time-scales for the state variables at a given activation level

	IonChannel.computeLinear(v, freqs, **kwargs)

	Combute the contributions of the state variables to the linearized channel current

	IonChannel.computeLinearConc(v, freqs, ion, …)

	Combute the contributions of the state variables to the linearized channel current

	IonChannel.computeLinSum(v, freqs[, e])

	Combute the linearized channel current contribution (without concentributions from the concentration - see computeLinConc())

	IonChannel.computeLinConc(v, freqs, ion[, e])

	Combute the linearized channel current contribution from the concentrations

Neural evaluation tree simulator

Compute Fourrier transforms

	
class FourrierTools(tarr, fmax=7, base=10, num=200)

	Performs an accurate Fourrier transform on functions
evaluated at a given array of temporal grid points

	Parameters

	
	tarr (np.array of floats,) – the time points (ms) at which the function is evaluated, have to be
regularly spaced

	fmax (float, optional (default 7.)) – the maximum value to which the logarithm is evaluated to get the
maximum evaluation frequency

	base (float, optional (defaul 10)) – the base of the logarithm used to generated the logspace

	num (int, even, optional (default 200)) – Number of points. the eventual number of points in frequency space
is (2+1/2)*num

	Variables

	
	s (np.array of complex) – The frequencies at which input arrays in the Fourrier domain are
supposed to be evaluated

	t (np.array of real) – The time array at which input arrays in the time domain are supposed
to be evaluated

	ind_0s (int) – Index of the zero frequency component in self.s

	FourrierTools.__call__(arr)

	Evaluate the Fourrier transform of arr

	FourrierTools.ft(arr)

	Evaluate the Fourrier transform of arr

	FourrierTools.ftInv(arr)

	Evaluate the inverse Fourrier transform of arr

neat.STree.__getitem__

	
STree.__getitem__(index, **kwargs)

	Returns the node with given index, if no such node is in the tree, None
is returned.

	Parameters

	index (int) – the index of the node to be found

	Returns

	

	Return type

	neat.SNode or None

neat.STree.__len__

	
STree.__len__(node=None)

	Return the number of nodes in the tree. If an input node is specified,
the number of nodes in the subtree of the input node is returned

	Parameters

	node (neat.SNode (optional)) – The starting node. Defaults to root

	Returns

	

	Return type

	int

neat.STree.__iter__

	
STree.__iter__(node=None, **kwargs)

	Iterate over the nodes in the subtree of the given node.

Beware, if the given node is not in the tree, it will simply iterate
over the subtree of the given node.

	Parameters

	node (neat.SNode (optional)) – The starting node. Defaults to the root

neat.STree.__str__

	
STree.__str__(node=None)

	Generate a string of the subtree of the given node.

Beware, if the given node is not in the tree, it will simply iterate
over the subtree of the given node.

	Parameters

	node (neat.SNode (optional)) – The starting node. Defaults to the root

neat.STree.__copy__

	
STree.__copy__(new_tree=None)

	Fill the new_tree with it’s corresponding nodes in the same
structure as self, and copies all node variables that both tree
classes have in common

	Parameters

	new_tree (neat.STree or derived class (default is None)) – the tree class in which the self is copied. If None,
returns a copy of self.

	Returns

	

	Return type

	The new tree instance

neat.STree.checkOrdered

	
STree.checkOrdered()

	Check if the indices of the tree are number in the same order as they
appear in the iterator

neat.STree.getNodes

	
STree.getNodes(recompute_flag=1)

	Build a list of all the nodes in the tree

	Parameters

	recompute_flag (bool) – whether or not to re-evaluate the node list

	Returns

	

	Return type

	list of Snode

neat.STree.nodes

	
property STree.nodes

	Build a list of all the nodes in the tree

	Parameters

	recompute_flag (bool) – whether or not to re-evaluate the node list

	Returns

	

	Return type

	list of Snode

neat.STree.gatherNodes

	
STree.gatherNodes(node)

	Build a list of all the nodes in the subtree of the provided node

	Parameters

	node (Snode) – starting point node

	Returns

	

	Return type

	list of Snode

neat.STree.getLeafs

	
STree.getLeafs(recompute_flag=1)

	Get all leaf nodes in the tree.

	Parameters

	recompute_flag (bool) – Whether to force recomputing the leaf list. Defaults to 1.

neat.STree.leafs

	
property STree.leafs

	Get all leaf nodes in the tree.

	Parameters

	recompute_flag (bool) – Whether to force recomputing the leaf list. Defaults to 1.

neat.STree.isLeaf

	
STree.isLeaf(node)

	Check if input node is a leaf of the tree

	Parameters

	node (neat.SNode) –

neat.STree.root

	
property STree.root

	

neat.STree.isRoot

	
STree.isRoot(node)

	Check if input node is root of the tree.

	Parameters

	node (neat.SNode) –

neat.STree.addNodeWithParentFromIndex

	
STree.addNodeWithParentFromIndex(node_index, pnode, *args, **kwargs)

	Create a node with the given index and add it to the tree under a
specific parent node.

	Parameters

	
	node_index (int) – index of the new node

	pnode (neat.SNode) – parent node of the newly added node

	Raises

	ValueError – if node_index is already in the tree

neat.STree.addNodeWithParent

	
STree.addNodeWithParent(node, pnode)

	Add a node to the tree under a specific parent node

	Parameters

	
	node (neat.SNode) – node to be added

	pnode (neat.SNode) – parent node of the newly added node

neat.STree.softRemoveNode

	
STree.softRemoveNode(node)

	Remove a node and its subtree from the tree by deleting the reference
to it in its parent. Internally, the node and its linked subtree are not
changed

	Parameters

	node (neat.SNode) – node to be removed

neat.STree.removeNode

	
STree.removeNode(node)

	Remove a node as well as its subtree from the tree

	Parameters

	node (neat.SNode) – node to be removed

neat.STree.removeSingleNode

	
STree.removeSingleNode(node)

	Remove a single node from the tree. The nodes’ children become the
children of the nodes’ parent.

	Parameters

	node (neat.SNode) – node to be removed

neat.STree.insertNode

	
STree.insertNode(node, pnode, pcnodes=[])

	Insert a node in the tree as a child of a specified parent. The
original children of the parent that will become children of the node
are specified in the pcnodes list

	Parameters

	
	node (neat.SNode) – the node that is to be inserted

	pnode (neat.SNode) – the node that will become parent of the node that is to be
inserted

	pcnodes (list of neat.SNode) – the current children of the pnode that will become children of
the node

neat.STree.resetIndices

	
STree.resetIndices(n=0)

	Resets the indices in the order they appear in a depth-first iteration

neat.STree.getSubTree

	
STree.getSubTree(node, new_tree=None)

	Get the subtree of the specified node. The root of the subtree is a new
node with the same children as the original node, but None instead of a
parent.

	Parameters

	node (neat.SNode) – root of the sub tree

	Returns

	Subtree of with node as root

	Return type

	neat.STree

neat.STree.depthOfNode

	
STree.depthOfNode(node)

	compute the depth of the node (number of edges between node and root)

	Parameters

	node (neat.SNode) –

	Returns

	depth of the node

	Return type

	int

neat.STree.degreeOfNode

	
STree.degreeOfNode(node)

	Compute the degree (number of leafs in its subtree) of a node.

	Parameters

	node (neat.SNode) –

neat.STree.orderOfNode

	
STree.orderOfNode(node)

	Compute the order (number of bifurcations from the root) of a node.

	Parameters

	node (neat.SNode) –

neat.STree.pathToRoot

	
STree.pathToRoot(node)

	Return the path from a given node to the root

	Parameters:
	node: neat.SNode

	Returns

	List of nodes from node to root. First node is the input node
and last node is the root

	Return type

	list of neat.SNode

neat.STree.pathBetweenNodes

	
STree.pathBetweenNodes(from_node, to_node)

	Inclusive path from from_node to to_node.

	Parameters

	
	from_node (neat.SNode) –

	to_node (neat.SNode) –

	Returns

	List of nodes representing the direct path between from_node
and to_node, which are respectively the first and last nodes
in the list.

	Return type

	list of neat.SNode

neat.STree.pathBetweenNodesDepthFirst

	
STree.pathBetweenNodesDepthFirst(from_node, to_node)

	Inclusive path from from_node to to_node, ginven in a depth-
first ordering.

	Parameters

	
	from_node (neat.SNode) –

	to_node (neat.SNode) –

	Returns

	List of nodes representing the direct path between from_node
and to_node, which are respectively the first and last nodes
in the list.

	Return type

	list of neat.SNode

neat.STree.getNodesInSubtree

	
STree.getNodesInSubtree(ref_node, subtree_root=None)

	Returns the nodes in the subtree that contains the given reference nodes
and has the given subtree root as root. If the subtree root is not
provided, the subtree of the first child node of the root on the path to
the reference node is given (plus the root)

	Parameters

	
	ref_node (neat.SNode) – the reference node that is in the subtree

	subtree_root (neat.SNode) – what is to be the root of the subtree. If this node is not on
the path from reference node to root, a ValueError is raised

	Returns

	List of all nodes in the subtree. It’s root is in the first
position

	Return type

	list of neat.SNode

neat.STree.sisterLeafs

	
STree.sisterLeafs(node)

	Find the leafs that are in the subtree of the nearest bifurcation node
up from the input node.

	Parameters

	node (neat.SNode) – Starting node for search

	Returns

	
	node (neat.SNode) – the bifurcation node

	sister_leafs (list of neat.SNode) – The first element is the input node. The others are the leafs
of the subtree emanating from the bifurcation node that are not
in the subtree from the input node.

	corresponding_children (list of neat.SNode) – The children of the bifurcation node. If the number of leafs
sister_leafs is the same as the number of
corresponding_children, the subtree of each element of
corresponding_children has exactly one leaf, the corresponding
element in sister_leafs

neat.STree.upBifurcationNode

	
STree.upBifurcationNode(node, cnode=None)

	Find the nearest bifurcation node up (towards root) from the input node.

	Parameters

	
	node (neat.SNode) – Starting node for search

	cnode (neat.SNode) – For recursion, don’t change default

	Returns

	
	node (neat.SNode) – the bifurcation node

	cnode (neat.SNode) – The bifurcation node’s child on the path to the input node.

neat.STree.downBifurcationNode

	
STree.downBifurcationNode(node)

	Find the nearest bifurcation node down (towards leafs) from the input node.

	Parameters

	node (neat.SNode) – Starting node for search

	Returns

	node – the bifurcation node

	Return type

	neat.SNode

neat.STree.getBifurcationNodes

	
STree.getBifurcationNodes(nodes)

	Get the bifurcation nodes in bewteen the provided input nodes

	Parameters

	nodes (list of neat.SNode) – the input nodes

	Returns

	the bifurcation nodes

	Return type

	list of neat.SNode

neat.STree.getNearestNeighbours

	
STree.getNearestNeighbours(node, nodes)

	Find the nearest neighbours of node in nodes. If nodes contains
node, it is excluded from the search.

When a node in the up-direction is a bifurcation node and in nodes, nodes
in its other subtree are excluded from the search

!!! Untested

	Parameters

	
	node (neat.SNode) – node for which the nearest neighbours are sought

	nodes (list of neat.SNode) – list in which nearest neighbours of node are sought

neat.STree.__copy__

	
STree.__copy__(new_tree=None)

	Fill the new_tree with it’s corresponding nodes in the same
structure as self, and copies all node variables that both tree
classes have in common

	Parameters

	new_tree (neat.STree or derived class (default is None)) – the tree class in which the self is copied. If None,
returns a copy of self.

	Returns

	

	Return type

	The new tree instance

neat.CompartmentTree.addCurrent

	
CompartmentTree.addCurrent(channel, e_rev)

	Add an ion channel current to the tree

	Parameters

	
	channel_name (string) – The name of the channel type

	e_rev (float) – The reversal potential of the ion channel [mV]

neat.CompartmentTree.setExpansionPoints

	
CompartmentTree.setExpansionPoints(expansion_points)

	Set the choice for the state variables of the ion channel around which
to linearize.

Note that when adding an ion channel to the tree, the default expansion
point setting is to linearize around the asymptotic values for the state
variables at the equilibrium potential store in self.e_eq.
Hence, this function only needs to be called to change that setting.

	Parameters

	expansion_points (dict {channel_name: None or dict}) – dictionary with as keys channel_name the name of the ion channel
and as value its expansion point

neat.CompartmentTree.setEEq

	
CompartmentTree.setEEq(e_eq, indexing='locs')

	Set the equilibrium potential at all nodes on the compartment tree

	Parameters

	
	e_eq (float or np.array of floats) – The equilibrium potential(s). If a float, the same potential is set
at every node. If a numpy array, must have the same length as self

	indexing ('locs' or 'tree') – The ordering of the equilibrium potentials. If ‘locs’, assumes the
equilibrium potentials are in the order of the list of locations
to which the tree is fitted. If ‘tree’, assumes they are in the order
of which nodes appear during iteration

neat.CompartmentTree.getEEq

	
CompartmentTree.getEEq(indexing='locs')

	Get the equilibrium potentials at each node.

	Parameters

	indexing ('locs' or 'tree') – The ordering of the returned array. If ‘locs’, returns the array
in the order of the list of locations to which the tree is fitted.
If ‘tree’, returns the array in the order in which nodes appear
during iteration

neat.CompartmentTree.fitEL

	
CompartmentTree.fitEL()

	Fit the leak reversal potential to obtain the stored equilibirum potentials
as resting membrane potential

neat.CompartmentTree.getEquivalentLocs

	
CompartmentTree.getEquivalentLocs()

	Get list of fake locations in the same order as original list of locations
to which the compartment tree was fitted.

	Returns

	Tuple has the form (node.index, .5)

	Return type

	list of tuple

neat.CompartmentTree.calcImpedanceMatrix

	
CompartmentTree.calcImpedanceMatrix(freqs=0.0, channel_names=None, indexing='locs', use_conc=False)

	Constructs the impedance matrix of the model for each frequency provided
in freqs. This matrix is evaluated at the equilibrium potentials
stored in each node

	Parameters

	
	freqs (np.array (dtype = complex) or float) – Frequencies at which the matrix is evaluated [Hz]

	channel_names (None (default) or list of str) – The channels to be included in the matrix. If None, all
channels present on the tree are included in the calculation

	use_conc (bool) – wheter or not to use the concentration dynamics

	indexing ('tree' or 'locs') – Whether the indexing order of the matrix corresponds to the tree
nodes (order in which they occur in the iteration) or to the
locations on which the reduced model is based

	Returns

	The first dimension corresponds to the
frequency, the second and third dimension contain the impedance
matrix for that frequency

	Return type

	np.ndarray (ndim = 3, dtype = complex)

neat.CompartmentTree.calcConductanceMatrix

	
CompartmentTree.calcConductanceMatrix(indexing='locs')

	Constructs the conductance matrix of the model

	Returns

	the conductance matrix

	Return type

	np.ndarray (dtype = float, ndim = 2)

neat.CompartmentTree.calcSystemMatrix

	
CompartmentTree.calcSystemMatrix(freqs=0.0, channel_names=None, with_ca=True, use_conc=False, indexing='locs')

	Constructs the matrix of conductance and capacitance terms of the model
for each frequency provided in freqs. this matrix is evaluated at
the equilibrium potentials stored in each node

	Parameters

	
	freqs (np.array (dtype = complex) or float (default 0.)) – Frequencies at which the matrix is evaluated [Hz]

	channel_names (None (default) or list of str) – The channels to be included in the matrix. If None, all
channels present on the tree are included in the calculation

	with_ca (bool) – Whether or not to include the capacitive currents

	use_conc (bool) – wheter or not to use the concentration dynamics

	indexing ('tree' or 'locs') – Whether the indexing order of the matrix corresponds to the tree
nodes (order in which they occur in the iteration) or to the
locations on which the reduced model is based

	Returns

	The first dimension corresponds to the
frequency, the second and third dimension contain the impedance
matrix for that frequency

	Return type

	np.ndarray (ndim = 3, dtype = complex)

neat.CompartmentTree.calcEigenvalues

	
CompartmentTree.calcEigenvalues(indexing='tree')

	Calculates the eigenvalues and eigenvectors of the passive system

	Returns

	
	np.ndarray (ndim = 1, dtype = complex) – the eigenvalues

	np.ndarray (ndim = 2, dtype = complex) – the right eigenvector matrix

	indexing (‘tree’ or ‘locs’) – Whether the indexing order of the matrix corresponds to the tree
nodes (order in which they occur in the iteration) or to the
locations on which the reduced model is based

neat.CompartmentTree.computeGMC

	
CompartmentTree.computeGMC(z_mat_arg, e_eqs=None, channel_names=['L'])

	Fit the models’ membrane and coupling conductances to a given steady
state impedance matrix.

	Parameters

	
	z_mat_arg (np.ndarray (ndim = 2, dtype = float or complex) or) – list of np.ndarray (ndim = 2, dtype = float or complex)
If a single array, represents the steady state impedance matrix,
If a list of arrays, represents the steady state impedance
matrices for each equilibrium potential in e_eqs

	e_eqs (np.ndarray (ndim = 1, dtype = float) or float) – The equilibirum potentials in each compartment for each
evaluation of z_mat

	channel_names (list of string (defaults to ['L'])) – Names of the ion channels that have been included in the impedance
matrix calculation and for whom the conductances are fit. Default is
only leak conductance

neat.CompartmentTree.computeGChanFromImpedance

	
CompartmentTree.computeGChanFromImpedance(channel_names, z_mat, e_eq, freqs, sv=None, weight=1.0, all_channel_names=None, other_channel_names=None, action='store')

	Fit the conductances of multiple channels from the given impedance
matrices, or store the feature matrix and target vector for later use
(see action).

	Parameters

	
	channel_names (list of str) – The names of the ion channels whose conductances are to be fitted

	z_mat (np.ndarray (ndim=3)) – The impedance matrix to which the ion channel is fitted. Shape is
(F, N, N) with N the number of compartments and F the
number of frequencies at which the matrix is evaluated

	e_eq (float) – The equilibirum potential at which the impedance matrix was computed

	freqs (np.array) – The frequencies at which z_mat is computed (shape is (F,))

	sv (dict {channel_name: np.ndarray} (optional)) – The state variable expansion point. If np.ndarray, assumes it is
the expansion point of the channel that is fitted. If dict, the
expansion points of multiple channels can be specified. An empty dict
implies the asymptotic points derived from the equilibrium potential

	weight (float) – The relative weight of the feature matrices in this part of the fit

	all_channel_names (list of str or None) – The names of all channels whose conductances will be fitted in a
single linear least squares fit

	other_channel_names (list of str or None (default)) – List of channels present in z_mat, but whose conductances are
already fitted. If None and ‘L’ is not in all_channel_names,
sets other_channel_names to ‘L’

	action ('fit', 'store' or 'return') – If ‘fit’, fits the conductances for this feature matrix and target
vector for directly; only based on z_mat; nothing is stored.
If ‘store’, stores the feature matrix and target vector to fit later
on. Relative weight in fit will be determined by weight.
If ‘return’, returns the feature matrix and target vector. Nothing
is stored

neat.CompartmentTree.computeGSingleChanFromImpedance

	
CompartmentTree.computeGSingleChanFromImpedance(channel_name, z_mat, e_eq, freqs, sv=None, weight=1.0, all_channel_names=None, other_channel_names=None, action='store')

	Fit the conductances of a single channel from the given impedance
matrices, or store the feature matrix and target vector for later use
(see action).

	Parameters

	
	channel_name (str) – The name of the ion channel whose conductances are to be fitted

	z_mat (np.ndarray (ndim=3)) – The impedance matrix to which the ion channel is fitted. Shape is
(F, N, N) with N the number of compartments and F the
number of frequencies at which the matrix is evaluated

	e_eq (float) – The equilibirum potential at which the impedance matrix was computed

	freqs (np.array) – The frequencies at which z_mat is computed (shape is (F,))

	sv (dict or nested dict of float or np.array, or None (default)) – The state variable expansion point. If simple dict, assumes it is
the expansion point of the channel that is fitted. If nested dict, the
expansion points of multiple channels can be specified. None
implies the asymptotic point derived from the equilibrium potential

	weight (float) – The relative weight of the feature matrices in this part of the fit

	all_channel_names (list of str or None) – The names of all channels whose conductances will be fitted in a
single linear least squares fit

	other_channel_names (list of str or None (default)) – List of channels present in z_mat, but whose conductances are
already fitted. If None and ‘L’ is not in all_channel_names,
sets other_channel_names to ‘L’

	action ('fit', 'store' or 'return') – If ‘fit’, fits the conductances for this feature matrix and target
vector for directly; only based on z_mat; nothing is stored.
If ‘store’, stores the feature matrix and target vector to fit later
on. Relative weight in fit will be determined by weight.
If ‘return’, returns the feature matrix and target vector. Nothing
is stored

neat.CompartmentTree.computeC

	
CompartmentTree.computeC(alphas, phimat, weights=None, tau_eps=5.0)

	Fit the capacitances to the eigenmode expansion

	Parameters

	
	alphas (np.ndarray of float or complex (shape=(K,))) – The eigenmode inverse timescales (1/s)

	phimat (np.ndarray of float or complex (shape=(K,C))) – The eigenmode vectors (C the number of compartments)

	weights (np.ndarray (shape=(K,)) or None) – The weights given to each eigenmode in the fit

neat.CompartmentTree.resetFitData

	
CompartmentTree.resetFitData()

	Delete all stored feature matrices and and target vectors.

neat.CompartmentTree.runFit

	
CompartmentTree.runFit()

	Run a linear least squares fit for the conductances concentration
mechanisms. The obtained conductances are stored on each node. All
stored feature matrices and and target vectors are deleted.

neat.CompartmentTree.computeFakeGeometry

	
CompartmentTree.computeFakeGeometry(fake_c_m=1.0, fake_r_a=9.999999999999999e-05, factor_r_a=1e-06, delta=1e-14, method=2)

	Computes a fake geometry so that the neuron model is a reduced
compurtmental model

	Parameters

	
	fake_c_m (float [uF / cm^2]) – fake membrane capacitance value used to compute the surfaces of
the compartments

	fake_r_a (float [MOhm * cm]) – fake axial resistivity value, used to evaluate the lengths of each
section to yield the correct coupling constants

	Returns

	radii, lengths – The radii, lengths, resp. surfaces for the section in NEURON. Array
index corresponds to NEURON index

	Return type

	np.array of floats [cm]

	Raises

	AssertionError – If the node indices are not ordered consecutively when iterating

neat.CompartmentTree.plotDendrogram

	
CompartmentTree.plotDendrogram(ax, plotargs={}, labelargs={}, textargs={}, nodelabels={}, bbox=None, y_max=None)

	Generate a dendrogram of the NET

	Parameters

	
	ax (matplotlib.axes) – the axes object in which the plot will be made

	plotargs (dict (string : value)) – keyword args for the matplotlib plot function, specifies the
line properties of the dendrogram

	labelargs (dict (string : value)) – keyword args for the matplotlib plot function, specifies the
marker properties for the node points. Or dict with keys node
indices, and with values dicts with keyword args for the
matplotlib function that specify the marker properties for
specific node points. The entry under key -1 specifies the
properties for all nodes not explicitly in the keys.

	textargs (dict (string : value)) – keyword args for matplotlib textproperties

	nodelabels (dict (int: string) or None) – labels of the nodes. If None, nodes are named by default
according to their location indices. If empty dict, no labels
are added.

	y_max (int, float or None) – specifies the y-scale. If None, the scale is computed from
self. By default, y=1 is added for each child of a node, so
if y_max is smaller than the depth of the tree, part of it will
not be plotted

neat.NET.getLocInds

	
NET.getLocInds(sroot=None)

	Get the indices of the locations a subtree integrates

	Parameters

	sroot (neat.NETNode, int or None) – Root of the subtree, or index of the root. If None, subtree is
the whole tree.

	Returns

	loc_inds

	Return type

	indices of locations

neat.NET.getLeafLocNode

	
NET.getLeafLocNode(loc_ind)

	Get the node for which loc_ind is a new location

	Parameters

	loc_ind (int) – index of the location

	Returns

	

	Return type

	NETNode

neat.NET.setNewLocInds

	
NET.setNewLocInds()

	Set the new location indices in a tree

neat.NET.getReducedTree

	
NET.getReducedTree(loc_inds, indexing='NET eval')

	Construct a reduced tree where only the locations index by ``loc_inds’’
are retained

	Parameters

	
	loc_inds (iterable of ints) – the indices of the locations that are to be retained

	indexing ('NET eval' or 'locs') – if ‘NET eval’, indexing of NETNode.loc_inds will be taken to be the
indices of locations for which the full NET is evaluated. Otherwise
will be indices of the input loc_inds

neat.NET.calcTotalImpedance

	
NET.calcTotalImpedance(node)

	Compute the total impedance associated with a node. I.e. the sum of all
impedances on the path from node to root

	Parameters

	node (SNode) –

	Returns

	total impedance

	Return type

	float

neat.NET.calcIZ

	
NET.calcIZ(loc_inds)

	compute I_Z between any pair of locations in loc_inds

	Parameters

	loc_inds (iterable of ints) – the indices of locations between which I_Z has to be evaluated

	Returns

	float or dict of tuple – Returns a float if the number of location indices is two, otherwise
a dictionary with location pairs (smallest is listed first) as keys
and I_Z values as values

	Return type

	float

neat.NET.calcIZMatrix

	
NET.calcIZMatrix()

	compute the Iz matrix for all locations present in the tree

	Returns

	The Iz matrix

	Return type

	np.ndarray of float

neat.NET.calcImpedanceMatrix

	
NET.calcImpedanceMatrix()

	Compute the impedance matrix approximation associated with the NET

	Returns

	the impedance matrix approximation

	Return type

	np.ndarray (ndim = 2)

neat.NET.calcImpMat

	
NET.calcImpMat()

	Compute the impedance matrix approximation associated with the NET

	Returns

	the impedance matrix approximation

	Return type

	np.ndarray (ndim = 2)

neat.NET.getCompartmentalization

	
NET.getCompartmentalization(Iz, returntype='node index')

	Returns a compartmentalization for the NET tree where each pair of
compartments is separated by an Iz of at least Iz. The
compartmentalization is coded as a list of list, each sublist representing
a the nodes closest to the root associated with the compartment.

	Parameters

	
	Iz (float) – the minimum Iz separating the compartments

	returntype (str ('node index', 'node')) – either returns the node indices or the node objects

	Returns

	the compartments

	Return type

	list of lists

neat.NET.plotDendrogram

	
NET.plotDendrogram(ax, plotargs={}, labelargs={}, textargs={}, incolors={}, inlabels={}, nodelabels={}, cs_comp={}, cmap=None, z_max=None, add_scalebar=True)

	Generate a dendrogram of the NET

	Parameters

	
	ax (matplotlib.axes) – the axes object in which the plot will be made

	plotargs (dict (string : value)) – keyword args for the matplotlib plot function, specifies the
line properties of the dendrogram

	labelargs (dict (string : value)) – keyword args for the matplotlib plot function, specifies the
marker properties for the node points. Or dict with keys node
indices, and with values dicts with keyword args for the
matplotlib function that specify the marker properties for
specific node points. The entry under key -1 specifies the
properties for all nodes not explicitly in the keys.

	textargs (dict (string : value)) – keyword args for matplotlib textproperties

	incolors (dict (int : string)) – dict with locinds as keys and colors as values

	inlabels (dict (int : string)) – dict with locinds as keys and label strings as values

	nodelabels (dict (int: string) or None) – labels of the nodes. If None, nodes are named by default
according to their location indices. If empty dict, no labels
are added.

	cs_comp (dict (int : float)) – dict with node inds as keys and compartment colors as values

	z_max (float or None) – specifies the y-scale. If None, the scale is computed from
self

	add_scalebar (bool) – whether or not to add a scale bar

neat.Kernel.k_bar

	
property Kernel.k_bar

	The total surface under the kernel

neat.Kernel.t

	
Kernel.t(t_arr)

	Evaluates the kernel in the time domain

	Parameters

	t_arr (np.array of float) – the time array at which the kernel is evaluated

	Returns

	the temporal kernel

	Return type

	np.array of float

neat.Kernel.ft

	
Kernel.ft(s_arr)

	Evaluates the kernel in the Fourrier domain

	Parameters

	s_arr (np.array of complex) – The frequencies (Hz) at which the kernel is to be evaluated

	Returns

	The Fourrier transform of the kernel

	Return type

	np.array of complex

neat.MorphTree.readSWCTreeFromFile

	
MorphTree.readSWCTreeFromFile(file_n, types=[1, 3, 4])

	Non-specific for a “tree data structure”
Read and load a morphology from an SWC file and parse it into
an neat.MorphTree object.

On the NeuroMorpho.org website, 5 types of somadescriptions are
considered (http://neuromorpho.org/neuroMorpho/SomaFormat.html).
The “3-point soma” is the standard and most files are converted
to this format during a curation step. neat follows this default
specification and the internal structure of `neat` implements
the 3-point soma. Additionally multi-cylinder descriptions with more
than three nodes are also supported, but are converted to the standard
three point description.

Additionally, the root node of the tree must have index == 1,
swc_type == 1 and occur first in the SWC file.

	Parameters

	
	file_n (str) – name of the file to open

	types (list of ints) – NeuroMorpho.org segment types to be loaded

Examples

The three point description is

1 1 x y z r -1
1 1 x y-r z r 1
1 1 x y+r z r 1

with x,y,z the coordinates of the soma center and r the soma radius

This is a valid three point desciption

start of file
1 1 45.3625 18.6775 -50.25 10.1267403895 -1
2 1 45.3625 8.55075961052 -50.25 10.1267403895 1
3 1 45.3625 28.8042403895 -50.25 10.1267403895 1
dendrite nodes
4 3 37.76 12.99 -46.08 0.29 1
5 3 26.7068019951 8.26344199599 -36.9426896493 0.795614809475 4
...

This is a valid multi-cylinder descirption

start of file
1 1 1066.38 399.67 157.0 4.9215 -1
2 1 1071.3 399.67 157.0 4.9215 1
3 1 1076.22 399.67 157.0 4.9215 2
4 1 1066.5 402.83 157.0 11.494 2
5 1 1062.4 405.5 157.0 15.308 4
6 1 1056.6 410.25 158.0 20.536 5
7 1 1056.6 410.25 158.0 20.536 6
8 1 1070.0 427.75 161.0 2.305 7
dendrite nodes
9 3 1070.0 427.75 161.0 0.886 8
...

	Raises

	ValueError – If the SWC file is not consistent with the aforementioned conventions

neat.MorphTree.determineSomaType

	
MorphTree.determineSomaType(file_n)

	Determine the soma type used in the SWC file.
This method searches the whole file for soma entries.

Only tbe standard three-point soma type and a multi-cylinder description
are supported.

Furthermore, the root node of the tree must have index == 1,
swc_type == 1 and occur first in the SWC file.

	Parameters

	file_n (string) – Name of the file containing the SWC description

	Returns

	soma_type – Integer indicating one of the su[pported SWC soma formats.
1: Default three-point soma,
2: multiple cylinder description

	Return type

	int

	Raises

	ValueError – If soma type is not supported (less than three nodes have soma)

neat.MorphTree.__getitem__

	
MorphTree.__getitem__(index, skip_inds=(2, 3))

	Returns the node with given index, if no such node is in the tree, None
is returned.

	Parameters

	index (int) – the index of the node to be found

	Returns:
	neat.MorphNode or None

neat.MorphTree.__iter__

	
MorphTree.__iter__(node=None, skip_inds=(2, 3))

	Overloaded iterator from parent class that avoids iterating over the
nodes with index 2 and 3

	Parameters

	
	node (neat.MorphNode) – The starting node. Defaults to the root

	skip_inds (tuple of ints) – Indices of the nodes that are skipped by the iterator. Defaults
to (2,3), the nodes that contain extra geometrical
information on the soma.

	Yields

	neat.MorphNode – Nodes in the tree

neat.MorphTree.root

	
property MorphTree.root

	Returns the root of the original or the computational tree, depending
on which treetype is active.

neat.MorphTree.getNodes

	
MorphTree.getNodes(recompute_flag=0, skip_inds=(2, 3))

	Overloads the parent function to allow skipping nodes with certain
indices and to return the nodes associated with the corresponding
treetype.

	Parameters

	
	recompute_flag (bool) – whether or not to re-evaluate the node list. Defaults to False.

	skip_inds (tuple of ints) – Indices of the nodes that are skipped by the iterator. Defaults
to (2,3), the nodes that contain extra geometrical
information on the soma.

	Returns

	

	Return type

	list of neat.MorphNode

neat.MorphTree.nodes

	
property MorphTree.nodes

	Overloads the parent function to allow skipping nodes with certain
indices and to return the nodes associated with the corresponding
treetype.

	Parameters

	
	recompute_flag (bool) – whether or not to re-evaluate the node list. Defaults to False.

	skip_inds (tuple of ints) – Indices of the nodes that are skipped by the iterator. Defaults
to (2,3), the nodes that contain extra geometrical
information on the soma.

	Returns

	

	Return type

	list of neat.MorphNode

neat.MorphTree.getLeafs

	
MorphTree.getLeafs(recompute_flag=0)

	Overloads the getLeafs of the parent class to return the leafs
in the current treetype.

	Parameters

	recompute_flag (bool) – Whether to force recomputing the leaf list. Defaults to 0.

neat.MorphTree.leafs

	
property MorphTree.leafs

	Overloads the getLeafs of the parent class to return the leafs
in the current treetype.

	Parameters

	recompute_flag (bool) – Whether to force recomputing the leaf list. Defaults to 0.

neat.MorphTree.getNodesInBasalSubtree

	
MorphTree.getNodesInBasalSubtree()

	Return the nodes associated with the basal subtree

	Returns

	List of all nodes in the basal subtree

	Return type

	list of neat.MorphNode

neat.MorphTree.getNodesInApicalSubtree

	
MorphTree.getNodesInApicalSubtree()

	Return the nodes associated with the apical subtree

	Returns

	List of all nodes in the apical subtree

	Return type

	list of neat.MorphNode

neat.MorphTree.getNodesInAxonalSubtree

	
MorphTree.getNodesInAxonalSubtree()

	Return the nodes associated with the apical subtree

	Returns

	List of all nodes in the apical subtree

	Return type

	list of neat.MorphNode

neat.MorphTree._convertNodeArgToNodes

	
MorphTree._convertNodeArgToNodes(node_arg)

	Converts a node argument to a list of nodes. Behaviour depends on the
type of argument.

	Parameters

	node_arg (None, neat.MorphNode, {‘apical’, ‘basal’, ‘axonal’} or iterable collection of instances of neat.MorphNode) –
	None: returns all nodes

	neat.MorphNode: returns list of nodes in the subtree of the given node

	{‘apical’, ‘basal’, ‘axonal’}: returns list of nodes in the apical, basal or axonal subtree

	
	iterable collection of neat.MorphNode: returns the same list of nodes
	If an iterable collection of original nodes is given, and the treetype
is computational, a reduced list is returned where only the corresponding
computational nodes are included. If an iterable collection of
computational nodes is given, and the treetype is original, a list of
corresponding original nodes is given, but the in between nodes are not
added.

	Returns

	

	Return type

	list of neat.MorphNode

neat.MorphTree.setTreetype

	
MorphTree.setTreetype(treetype)

	Set the active tree

	Parameters

	treetype ('original' or 'computational') – the treetype thas is set to active

neat.MorphTree.treetype

	
property MorphTree.treetype

	

neat.MorphTree.readSWCTreeFromFile

	
MorphTree.readSWCTreeFromFile(file_n, types=[1, 3, 4])

	Non-specific for a “tree data structure”
Read and load a morphology from an SWC file and parse it into
an neat.MorphTree object.

On the NeuroMorpho.org website, 5 types of somadescriptions are
considered (http://neuromorpho.org/neuroMorpho/SomaFormat.html).
The “3-point soma” is the standard and most files are converted
to this format during a curation step. neat follows this default
specification and the internal structure of `neat` implements
the 3-point soma. Additionally multi-cylinder descriptions with more
than three nodes are also supported, but are converted to the standard
three point description.

Additionally, the root node of the tree must have index == 1,
swc_type == 1 and occur first in the SWC file.

	Parameters

	
	file_n (str) – name of the file to open

	types (list of ints) – NeuroMorpho.org segment types to be loaded

Examples

The three point description is

1 1 x y z r -1
1 1 x y-r z r 1
1 1 x y+r z r 1

with x,y,z the coordinates of the soma center and r the soma radius

This is a valid three point desciption

start of file
1 1 45.3625 18.6775 -50.25 10.1267403895 -1
2 1 45.3625 8.55075961052 -50.25 10.1267403895 1
3 1 45.3625 28.8042403895 -50.25 10.1267403895 1
dendrite nodes
4 3 37.76 12.99 -46.08 0.29 1
5 3 26.7068019951 8.26344199599 -36.9426896493 0.795614809475 4
...

This is a valid multi-cylinder descirption

start of file
1 1 1066.38 399.67 157.0 4.9215 -1
2 1 1071.3 399.67 157.0 4.9215 1
3 1 1076.22 399.67 157.0 4.9215 2
4 1 1066.5 402.83 157.0 11.494 2
5 1 1062.4 405.5 157.0 15.308 4
6 1 1056.6 410.25 158.0 20.536 5
7 1 1056.6 410.25 158.0 20.536 6
8 1 1070.0 427.75 161.0 2.305 7
dendrite nodes
9 3 1070.0 427.75 161.0 0.886 8
...

	Raises

	ValueError – If the SWC file is not consistent with the aforementioned conventions

neat.MorphTree.setCompTree

	
MorphTree.setCompTree(compnodes=None, set_as_primary_tree=False, eps=1e-08)

	Sets the nodes that contain computational parameters. This are a priori
either bifurcations, leafs, the root or nodes where the neurons’
relevant parameters change.

	Parameters

	
	compnodes (list of ::class::MorphNode) – list of nodes that should be retained in the computational tree.
Note that specifying bifurcations, leafs or the root is
superfluous, since they are part of the computational tree by
default.

	set_as_primary_tree (bool (default False)) – if True, sets the computational tree as the primary tree

	eps (float (default 1e-8)) – relative margin for parameter change

neat.MorphTree._evaluateCompCriteria

	
MorphTree._evaluateCompCriteria(node, eps=1e-08, rbool=False)

	Return True if relative difference between node radius and parent
node raidus is larger than margin eps, or if the node is the root
or bifurcation node.

	Parameters

	
	node (neat.MorphNode) – node that is compared to parent node

	eps (float (optional, default 1e-8)) – the margin

	Returns

	

	Return type

	bool

neat.MorphTree.removeCompTree

	
MorphTree.removeCompTree()

	Removes the computational tree

neat.MorphTree._convertLocArgToLocs

	
MorphTree._convertLocArgToLocs(locarg)

	Converts locations argument to list of neat.MorphLoc.

	Parameters

	locarg (list of dictionaries, tuples or neat.MorphLoc, or string) –
	If list, entries should be valid arguments to initialize a neat.MorphLoc

	If string, should be the name of a list of locations stored in self

	Returns

	List of locations, each referencing the current tree

	Return type

	list of neat.MorphLoc

neat.MorphTree.storeLocs

	
MorphTree.storeLocs(*args, **kwargs)

	Store locations under a specified name

	Parameters

	
	locs (list of dicts, tuples or neat.MorphLoc) – the locations to be stored

	name (string) – name under which these locations are stored

	warn (bool (default True)) – raise a UserWarning if two or more locations in locs refer
to the soma. Choose False if this is desired to remove
the warning.

neat.MorphTree.addLoc

	
MorphTree.addLoc(*args, **kwargs)

	Add location to set of locations of given name

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – the location to be added

	name (str) – the name of the set of locations to which the location is added

neat.MorphTree.clearLocs

	
MorphTree.clearLocs()

	Remove all set of locs stored in the tree

neat.MorphTree.removeLocs

	
MorphTree.removeLocs(name)

	Remove a set of locations of a given name

	Parameters

	name (string) – name under which the desired list of locations is stored

neat.MorphTree._tryName

	
MorphTree._tryName(name)

	Tests if the name is in use. Raises a KeyError when it is not in use and
prints a list of possible names

	Parameters

	name (string) – name of the desired list of locations

	Raises

	KeyError – If ‘name’ does not refer to a set of locations in use

neat.MorphTree.getLocs

	
MorphTree.getLocs(name)

	Returns a set of locations of a specified name

	Parameters

	name (string) – name under which the desired list of locations is stored

	Returns

	

	Return type

	list of neat.MorphLoc

neat.MorphTree.getNodeIndices

	
MorphTree.getNodeIndices(name)

	Returns an array of node indices of locations of a specified name

	Parameters

	name (string) – name under which the desired list of locations is stored

	Returns

	

	Return type

	numpy.array of ints

neat.MorphTree.getXCoords

	
MorphTree.getXCoords(name)

	Returns an array of x-values of locations of a specified name

	Parameters

	name (string) – name under which the desired list of locations is stored

neat.MorphTree.getLocindsOnNode

	
MorphTree.getLocindsOnNode(name, node)

	Returns a list of the indices of locations in the list of a given name
that are on a the input node, ordered for increasing x

	Parameters

	
	name (string) – which list of locations to consider

	node (neat.MorphNode) – the node to consider. Should be part of the original
tree

	Returns

	indices of locations on the path

	Return type

	list of ints

neat.MorphTree.getLocindsOnNodes

	
MorphTree.getLocindsOnNodes(name, node_arg)

	Returns a list of the indices of locations in the list of a given name
that are on one of the nodes specified in the node list. Within each
node, locations are ordered for increasing x

	Parameters

	
	name (string) – which list of locations to consider

	node_arg – see documentation of MorphTree._convertNodeArgToNodes

	Returns

	indices of locations on the path

	Return type

	list of ints

neat.MorphTree.getLocindsOnPath

	
MorphTree.getLocindsOnPath(name, node0, node1, xstart=0.0, xstop=1.0)

	Returns a list of the indices of locations in the list of a given name
that are on the given path. The path is taken to start at the input
x-start coordinate of the first node in the list and to stop at the
given x-stop coordinate of the last node in the list

	Parameters

	
	name (string) – which list of locations to consider

	node0 (SNode) – start node of path

	node1 (SNode) – stop node of path

	xstart (float (in [0,1])) – starting coordinate on node0

	xstop (float (in [0,1])) – stopping coordinate on node1

	Returns

	Indices of locations on the path. If path is empty, an empty
array is returned.

	Return type

	list of ints

neat.MorphTree.getNearestLocinds

	
MorphTree.getNearestLocinds(locs, name, direction=0, check_siblings=True, pprint=False)

	For each location in the input location list, find the index of the
closest location in a set of locations stored under a given name. The
search can go in the either go in the up or down direction or in both
directions.

	Parameters

	
	locs (list of dicts, tuples or neat.MorphLoc) – the locations for which the nearest location index has to be
found

	name (string) – name under which the reference list is stored

	direction (int) – flag to indicate whether to search in both directions (0), only
in the up direction (1) or in the down direction (2).

	Returns

	loc_indices – indices of the locations closest to the given locs

	Return type

	list of ints

neat.MorphTree.getNearestNeighbourLocinds

	
MorphTree.getNearestNeighbourLocinds(loc, locarg)

	Search nearest neighbours to loc in locarg.

	Parameters

	
	loc (tuple, dict or neat.MorphLoc) – The locations for which nearest neighbours have to be found

	locarg (str or list of locs) – See documentation of MorphTree._parseLocArg, the set of locations
within which to look for nearest neighbours

	Returns

	Indices of nearest neighbours of loc in locarg

	Return type

	list of ints

neat.MorphTree.getLeafLocinds

	
MorphTree.getLeafLocinds(name, recompute=False)

	Find the indices in the desire location list that are ‘leafs’, i.e.
locations for which no other location exist that is farther from the
root

	Parameters

	
	name (string) – name of the desired set of locations

	recompute (bool (optional, default False)) – whether or not to force recomputing the distances

	Returns

	the indices of the ‘leaf’ locations

	Return type

	list of inds

neat.MorphTree.distancesToSoma

	
MorphTree.distancesToSoma(locarg, recompute=False)

	Compute the distance of each location in a given set to the soma

	Parameters

	locarg (list of locations or string) – if list of locations, specifies the locations, if str,
specifies the name under which the set of location is stored
that should be used to create the new tree

	Returns

	
	np.array of float – the distances to the soma of the corresponding locations

	recompute (bool (optional)) – whether or not to force recomputing the distances

neat.MorphTree.distancesToBifurcation

	
MorphTree.distancesToBifurcation(name, recompute=False)

	Compute the distance of each location to the nearest bifurcation in
the ‘up’ direction (towards root)

	Parameters

	
	name (str) – name of the set of locations

	recompute (bool (optional, default False)) – whether or not to force recomputing the distances

	Returns

	the distances to the nearest bifurcation of the corresponding
locations

	Return type

	np.array of floats

neat.MorphTree.distributeLocsOnNodes

	
MorphTree.distributeLocsOnNodes(d2s, node_arg=None, name='dont save')

	Distributes locs on a given set of nodes at specified distances from the
soma. If the specified distances are on the specified nodes, the list
of locations will be empty. The locations are stored if the name is set
to be something other than ‘dont save’. On each node, locations are
ordered from low to high x-values.

	Parameters

	
	d2s (numpy.array of floats) – the distances from the soma at which to put the locations (micron)

	node_arg – see documentation of MorphTree._convertNodeArgToNodes

	name (string) – the name under which the locations are stored. Defaults to ‘dont save’
which means the locations are not stored

	Returns

	the list of locations

	Return type

	list of neat.MorphLoc

neat.MorphTree.distributeLocsUniform

	
MorphTree.distributeLocsUniform(*args, **kwargs)

	Distributes locations as uniform as possible, i.e. for a given distance
between locations dx, locations are distributed equidistantly on each
given node in the computational tree and their amount is computed
so that the distance in between them is as close to dx as possible.
Depth-first ordering.

	Parameters

	
	dx (float (> 0)) – target distance in micron between the locations

	node_arg – see documentation of MorphTree._convertNodeArgToNodes

	add_bifurcations (bool) – whether to ensure that all bifurcation nodes are added

	name (string) – the name under which the locations are stored. Defaults to ‘dont save’
which means the locations are not stored

	Returns

	the list of locations

	Return type

	list of neat.MorphLoc

neat.MorphTree.distributeLocsRandom

	
MorphTree.distributeLocsRandom(num, dx=0.001, node_arg=None, add_soma=True, name='dont save', seed=None)

	Returns a list of input locations randomly distributed on the tree

	Parameters

	
	num (int) – number of inputs

	dx (float (optional)) – minimal or given distance between input locations (micron)

	(optional) (node_arg) – see documentation of MorphTree._convertNodeArgToNodes

	add_soma (bool (optional)) – whether or not to include the possibility of adding locations on the
soma

	name (string (optional)) – the name under which the locations are stored. Defaults to ‘dont save’
which means the locations are not stored

	seed (int (optiona)) – Seed for numpy random number generator

	Returns

	the locations

	Return type

	list of neat.MorphLoc

neat.MorphTree.extendWithBifurcationLocs

	
MorphTree.extendWithBifurcationLocs(loc_arg, name='dont save')

	Extends input loc_arg with the intermediate bifurcations. They are
appended to the end of the list

	Parameters

	
	loc_arg (list of neat.MorphLoc or string) – the locations

	name (string (optional)) – The name under which the list of bifurcation locs will be stored.
Defaults to ‘dont save’ which means they are not stored.

	Returns

	the bifurcation locs

	Return type

	list of neat.MorphLoc

neat.MorphTree.uniqueLocs

	
MorphTree.uniqueLocs(loc_arg, name='dont save')

	Gets the unique locations in the provided locs

	Parameters

	
	loc_arg (list of neat.MorphLoc or string) – the locations

	name (string (optional)) – The name under which the list of bifurcation locs will be stored.
Defaults to ‘dont save’ which means they are not stored.

	Returns

	the bifurcation locs

	Return type

	list of neat.MorphLoc

neat.MorphTree.pathLength

	
MorphTree.pathLength(loc1, loc2, compute_radius=0)

	Find the length of the direct path between loc1 and loc2

	Parameters

	
	loc1 (dict, tuple or neat.MorphLoc) – one location

	loc2 (dict, tuple or neat.MorphLoc) – other location

	compute_radius (bool) – if True, also computes the average weighted radius of the path

	Returns

	
	L: float
	length of path, in micron

	R: float
	weighted average radius of path, in micron

	Return type

	L, R (optional)

neat.MorphTree.makeXAxis

	
MorphTree.makeXAxis(dx=10.0, node_arg=None, loc_arg=None)

	Create a set of locs suitable for serving as the x-axis for 1D plotting.
The neurons is put on a 1D axis with a depth-first ordering.

	Parameters

	
	dx (float) – target separation between the plot points (micron)

	node_arg – see documentation of MorphTree._convertNodeArgToNodes
The nodes on which the locations for the x-axis are distributed.
When this is given as a list of nodes, assumes a depth first
ordering.

	loc_arg (list of locs or string) – if list of locs, these locs will be used as x-axis, if string, name
of set of locs on the morphology that will be used as x-axis

neat.MorphTree.setNodeColors

	
MorphTree.setNodeColors(startnode=None)

	Set the color code for the nodes for 1D plotting

	Parameters

	node (int or neat.MorphNode) – index of the node or node whose subtree will be colored. Defaults
to the root

neat.MorphTree.getXValues

	
MorphTree.getXValues(locs)

	Get the corresponding location on the x-axis of the input locations

	Parameters

	locs (list of tuples, dicts or neat.MorphLoc) – list of the locations

neat.MorphTree.plot1D

	
MorphTree.plot1D(ax, parr, *args, **kwargs)

	Plot an array where each element corresponds to the matching location on
the x-axis with a depth-first ordering on a 1D plot

	Parameters

	
	ax (matplotlib.axes.Axes instance) – the ax object on which the plot will be made

	parr (numpy.array of floats) – the array that will be plotted

	args – arguments for matplotlib.pyplot.plot

	kwargs – arguments for matplotlib.pyplot.plot

	Returns

	lines – the line segments corresponding to the value of the plotted array
in each branch

	Return type

	list of matplotlib.lines.Line2D instances

	Raises

	AssertionError – When the number of elements in the data array in not equal to
the number of elements on the x-axis

neat.MorphTree.plotTrueD2S

	
MorphTree.plotTrueD2S(ax, parr, cmap=None, **kwargs)

	Plot an array where each element corresponds to the matching location in
the x-axis location list. Now all locations are plotted at their true
distance from the soma.

	Parameters

	
	ax (matplotlib.axes.Axes instance) – the ax object on which the plot will be made

	parr (numpy.array of floats) – the array that will be plotted

	cmap (matplotlib.colors.Colormap instance) – If provided, the lines will be colored according to the branch
to which they belong, in colors specified by the colormap

	kwargs – keyword arguments for matplotlib.pyplot.plot

	Returns

	
	lines

	lines (list of matplotlib.lines.Line2D) – the line segments corresponding to the value of the plotted array
in each branch

	Raises

	AssertionError – When the number of elements in the data array in not equal to
the number of elements on the x-axis

neat.MorphTree.colorXAxis

	
MorphTree.colorXAxis(ax, cmap, addScalebar=1, borderpad=- 1.8)

	Color the x-axis of a plot according to the morphology.

!!! Has to be called after all lines are plotted !!!

Furthermor, node colors have to be set first. This can be done with
MorphTree.setNodeColors() or manually by adding a ‘color’ entry
to the MorphNode.content dictionary

	Parameters

	
	ax (matplotlib.axes.Axes instance) – the ax object of which the x-axis will be colored

	cmap (matplotlib.colors.Colormap instance) – Colormap that determines the color of each branch

	sizex (float) – Size of scalebar (in micron). If set to None, no scalebar is
plotted.

	borderpad (float) – Borderpad of scalebar

neat.MorphTree.plot2DMorphology

	
MorphTree.plot2DMorphology(ax, node_arg=None, cs=None, cminmax=None, cmap=None, use_radius=1, draw_soma_circle=1, plotargs={}, textargs={}, marklocs=[], locargs={}, marklabels={}, labelargs={}, cb_draw=0, cb_orientation='vertical', cb_label='', sb_draw=1, sb_scale=100, sb_width=5.0, set_lims=True, lims_margin=0.1)

	Plot the morphology projected on the x,y-plane

	Parameters

	
	ax (matplotlib.axes.Axes instance) – the ax object on which the plot will be drawn

	node_arg – see documentation of MorphTree._convertNodeArgToNodes

	cs (dict {int: float}, None or 'x_color') – If dict, node indices are keys and the float value will
correspond to the plotted color. If None, the color of the tree
will be the one specified in plotargs. Note that the dict
does not have to contain all node indices. The ones that are not
featured in the dict are plot in the color specified in plotargs.
If ‘node_color’, colors will be those stored on the nodes. Note
that choosing this option when there are nodes without ‘color’
as an entry in node.content will result in an error. Node
colors can be set with MorphTree.setNodeColor()`

	cminmax ((float, float) or None (default)) – The min and max values of the color scale (if cs is provided).
If None, the min and max values of cs are used.

	cmap (matplotlib.colors.Colormap instance) – colormap fram which colors in cs are taken

	use_radius (bool) – If True, uses the swc radius for the width of the line
segments

	draw_soma_circle (bool) – If True, draws the soma as a circle, otherwise doesn’t draw
soma

	plotargs (dict) – kwargs for matplotlib.pyplot.plot. ‘c’- or ‘color’-
argument will be overwritten when cs is defined. ‘lw’- or
‘linewidth’ argument will be multiplied with the swc radius of
the node if use_radius is True.

	textargs (dict) – text properties for various labels in the plot

	marklocs (list of tuples, dicts or instances of neat.MorphLoc) – Location that will be plotted on the morphology

	locargs (dict or list of dict) – kwargs for matplotlib.pyplot.plot for the location.
Use only point markers and no lines! When it is a single dict
all location will have the same marker. When it is a list it
should have the same length as marklocs.

	marklabels (dict {int: string}) – Keys are indices of locations in marklocs, values are strings
that are used to annotate the corresponding locations

	labelargs (dict) – text properties for the location annotation

	cb_draw (bool) – Whether or not to draw a matplotlib.pyplot.colorbar()
instance.

	cb_orientation (string, 'vertical' or 'horizontal') – The colorbars’ orientation

	cb_label (string) – The label of the colorbar

	sb_draw (bool) – Whether or not to draw a scale bar

	sb_scale (float) – Lenght of the scale bar (micron)

	sb_width (float) – Width of the scale bar

	set_lims (bool (optional, default True)) – set ax limits based on the morphology

	lims_margin (float) – the margin, as fraction of total width and height of tree, at
which the limits are placed

neat.MorphTree.plotMorphologyInteractive

	
MorphTree.plotMorphologyInteractive(node_arg=None, use_radius=1, draw_soma_circle=1, plotargs={'c': 'k', 'lw': 1.0}, project3d=False)

	Show the morphology either in 3d or projected on the x,y-plane. When
a line segment is clicked, the associated node is printed.

	Parameters

	
	ax (matplotlib.axes.Axes instance) – the ax object on which the plot will be drawn

	node_arg – see documentation of MorphTree._convertNodeArgToNodes

	use_radius (bool) – If True, uses the swc radius for the width of the line
segments

	draw_soma_circle (bool) – If True, draws the soma as a circle, otherwise doesn’t draw
soma

neat.MorphTree.createNewTree

	
MorphTree.createNewTree(*args, **kwargs)

	Creates a new tree where the locs of a given ‘name’ are now the nodes.
Distance relations between locations are maintained (note that this
relation is stored in L attribute of neat.MorphNode, using the p3d
attribute containing the 3d coordinates does not maintain distances)

	Parameters

	
	name (string) – the name under which the locations are stored that should be
used to create the new tree

	fake_soma (bool (default False)) – if True, finds the common root of the set of locations and
uses that as the soma of the new tree. If False, the real soma
is used.

	store_loc_inds (bool (default False)) – store the index of each location in the content attribute of the
new node (under the key ‘loc ind’)

	Returns

	The new tree.

	Return type

	neat.MorphTree

neat.MorphTree.createCompartmentTree

	
MorphTree.createCompartmentTree(*args, **kwargs)

	Creates a new compartment tree where the provided set of locations
correspond to the nodes.

	Parameters

	locarg (list of locations or str) – if list of locations, specifies the locations, if str,
specifies the name under which the set of location is stored
that should be used to create the new tree

	Returns

	The new tree.

	Return type

	neat.MorphTree

neat.MorphTree.__copy__

	
MorphTree.__copy__(new_tree=None)

	Fill the new_tree with it’s corresponding nodes in the same
structure as self, and copies all node variables that both tree
classes have in common

	Parameters

	new_tree (STree or derived class (default is None)) – the tree class in which the self is copied. If None,
returns a copy of self.

	Returns

	

	Return type

	The new tree instance

neat.MorphNode.setP3D

	
MorphNode.setP3D(xyz, R, swc_type)

	Set the 3d parameters of the node

	Parameters

	
	xyz (np.array) – 3D location (um)

	R (float) – Radius of the segment (um)

	swc_type (int) – Type asscoiated with the segment according to SWC standards

neat.MorphNode.child_nodes

	
property MorphNode.child_nodes

	Get the child_nodes of this node. Indices 2 and 3 are skipped
by default (3-point soma convention)

	Parameters

	skip_inds (list or tuple of ints) – Node indices of child nodes that are not added to the returned list

	Returns

	The child nodes

	Return type

	list of neat.MorphNode

neat.PhysTree.asPassiveMembrane

	
PhysTree.asPassiveMembrane(*args, **kwargs)

	Makes the membrane act as a passive membrane (for the nodes in
node_arg), channels are assumed to add a conductance of
g_max * p_open to the membrane conductance, where p_open for each node
is evaluated at the equilibrium potential stored in that node

	Parameters

	node_arg (optional) – see documentation of MorphTree._convertNodeArgToNodes().
Defaults to None. The nodes for which the membrane is set to
passive

neat.PhysTree.setEEq

	
PhysTree.setEEq(*args, **kwargs)

	Set the equilibrium potentials throughout the tree

	Parameters

	e_eq_distr (float, dict or float -> float()) – The equilibrium potentials [mV]

neat.PhysTree.setPhysiology

	
PhysTree.setPhysiology(*args, **kwargs)

	Set specifice membrane capacitance, axial resistance and (optionally)
static point-like shunt conductances in the tree. Capacitance is stored
at each node as the attribute ‘c_m’ (uF/cm2) and axial resistance as the
attribute ‘r_a’ (MOhm*cm)

	Parameters

	
	c_m_distr (float, dict or float -> float()) – specific membrance capacitance

	r_a_distr (float, dict or float -> float()) – axial resistance

	g_s_distr (float, dict, float -> float() or None (optional, default) – is None)
point like shunt conductances (placed at (node.index, 1.) for the
nodes in node_arg). By default no shunt conductances are added

	node_arg (optional) – see documentation of MorphTree._convertNodeArgToNodes().
Defaults to None

neat.PhysTree.setLeakCurrent

	
PhysTree.setLeakCurrent(*args, **kwargs)

	Set the parameters of the leak current. At each node, leak is stored
under the attribute node.currents[‘L’] at a tuple (g_l, e_l) with
g_l the conductance [uS/cm^2] and e_l the reversal [mV]

	g_l_distr: float, dict or float -> float()
	If float, the leak conductance is set to this value for all
the nodes specified in node_arg. If it is a function, the input
must specify the distance from the soma (micron) and the output
the leak conductance [uS/cm^2] at that distance. If it is a
dict, keys are the node indices and values the ion leak
conductances [uS/cm^2].

	e_l_distr: float, dict or float -> float()
	If float, the reversal [mV] is set to this value for all
the nodes specified in node_arg. If it is a function, the input
must specify the distance from the soma [um] and the output
the reversal at that distance. If it is a
dict, keys are the node indices and values the ion reversals.

	node_arg: optional
	see documentation of MorphTree._convertNodeArgToNodes().
Defaults to None

neat.PhysTree.addCurrent

	
PhysTree.addCurrent(*args, **kwargs)

	Adds a channel to the morphology. At each node, the channel is stored
under the attribute node.currents[channel.__class__.__name__] as a
tuple (g_max, e_rev) with g_max the maximal conductance [uS/cm^2]
and e_rev the reversal [mV]

	Parameters

	
	channel_name (IonChannel) – The ion channel

	g_max_distr (float, dict or float -> float()) – If float, the maximal conductance is set to this value for all
the nodes specified in node_arg. If it is a function, the input
must specify the distance from the soma (micron) and the output
the ion channel density (uS/cm^2) at that distance. If it is a
dict, keys are the node indices and values the ion channel
densities (uS/cm^2).

	e_rev_distr (float, dict or float -> float()) – If float, the reversal (mV) is set to this value for all
the nodes specified in node_arg. If it is a function, the input
must specify the distance from the soma (micron) and the output
the reversal at that distance. If it is a
dict, keys are the node indices and values the ion reversals.

	node_arg (optional) – see documentation of MorphTree._convertNodeArgToNodes().
Defaults to None

neat.PhysTree.getChannelsInTree

	
PhysTree.getChannelsInTree(*args, **kwargs)

	Returns list of strings of all channel names in the tree

	Returns

	the channel names

	Return type

	list of string

neat.PhysTree.fitLeakCurrent

	
PhysTree.fitLeakCurrent(*args, **kwargs)

	Fits the leak current to fix equilibrium potential and membrane time-
scale.

!!! Should only be called after all ion channels have been added !!!

	Parameters

	
	e_eq_target_distr (float, dict or float -> float()) – The target reversal potential (mV). If float, the target reversal is
set to this value for all the nodes specified in node_arg. If it
is a function, the input must specify the distance from the soma (um)
and the output the target reversal at that distance. If it is a
dict, keys are the node indices and values the target reversals

	tau_m_target_distr (float, dict or float -> float()) – The target membrane time-scale (ms). If float, the target time-scale is
set to this value for all the nodes specified in node_arg. If it
is a function, the input must specify the distance from the soma (um)
and the output the target time-scale at that distance. If it is a
dict, keys are the node indices and values the target time-scales

	node_arg – see documentation of MorphTree._convertNodeArgToNodes().
Defaults to None

neat.PhysTree._evaluateCompCriteria

	
PhysTree._evaluateCompCriteria(node, eps=1e-08, rbool=False)

	Return True if relative difference in any physiological parameters
between node and child node is larger than margin eps.

Overrides the MorphTree._evaluateCompCriteria() function called by
MorphTree.setCompTree().

	Parameters

	
	node (::class::MorphNode) – node that is compared to parent node

	eps (float (optional, default 1e-8)) – the margin

	Returns

	

	Return type

	bool

neat.SOVTree.calcSOVEquations

	
SOVTree.calcSOVEquations(*args, **kwargs)

	Calculate the timescales and spatial functions of the separation of
variables approach, using the algorithm by (Major, 1993).

The (reciprocals) of the timescales (i.e. the roots of the transcendental
equation) are stored in the somanode.
The spatial factors are stored in each (computational) node.

	Parameters

	maxspace_freq (float (default is 500)) – roughly corresponds to the maximal spatial frequency of the
smallest time-scale mode

neat.SOVTree.getModeImportance

	
SOVTree.getModeImportance(locarg=None, sov_data=None, importance_type='simple')

	Gives the overal importance of the SOV modes for a certain set of
locations

	Parameters

	
	locarg (None or list of locations) –

	sov_data (None or tuple of mode matrices) – One of the keyword arguments locarg or sov_data
must not be None. If locarg is not None, the importance
is evaluated at these locations (see
neat.MorphTree._parseLocArg()).
If sov_data is not None, it is a tuple of a vector of
the reciprocals of the mode timescales and a matrix with the
corresponding spatial mode functions.

	importance_type (string ('relative' or 'absolute')) – when ‘absolute’, returns an absolute measure of the importance,
when ‘relative’, normalizes so that maximum importance is one.
Defaults to ‘relative’.

	Returns

	the importances associated with each mode for the provided set
of locations

	Return type

	np.ndarray (ndim = 1)

neat.SOVTree.getImportantModes

	
SOVTree.getImportantModes(locarg=None, sov_data=None, eps=0.0001, sort_type='timescale', return_importance=False)

	Returns the most importand eigenmodes (those whose importance is above
the threshold defined by eps)

	Parameters

	
	locarg (None or list of locations) –

	sov_data (None or tuple of mode matrices) – One of the keyword arguments locarg or sov_data
must not be None. If locarg is not None, the importance
is evaluated at these locations (see
neat.MorphTree._parseLocArg()).
If sov_data is not None, it is a tuple of a vector of
the reciprocals of the mode timescales and a matrix with the
corresponding spatial mode functions.

	eps (float) – the cutoff threshold in relative importance below which modes
are truncated

	sort_type (string ('timescale' or 'importance')) – specifies in which order the modes are returned. If ‘timescale’,
modes are sorted in order of decreasing time-scale, if
‘importance’, modes are sorted in order of decreasing importance.

	return_importance (bool) – if True, returns the importance metric associated with each
mode

	Returns

	
	alphas (np.ndarray of complex (ndim = 1)) – the reciprocals of mode time-scales [kHz]

	gammas (np.ndarray of complex (ndim = 2)) – the spatial function associated with each mode, evaluated at
each locations. Dimension 0 is number of modes and dimension 1
number of locations

	importance (np.ndarray (shape matches alphas, only if return_importance is True)) – value of importance metric for each mode

neat.SOVTree.calcImpedanceMatrix

	
SOVTree.calcImpedanceMatrix(locarg=None, sov_data=None, name=None, eps=0.0001, mem_limit=500, freqs=None)

	Compute the impedance matrix for a set of locations

	Parameters

	
	locarg (None or list of locations) –

	sov_data (None or tuple of mode matrices) – One of the keyword arguments locarg or sov_data
must not be None. If locarg is not None, the importance
is evaluated at these locations (see
neat.MorphTree._parseLocArg()).
If sov_data is not None, it is a tuple of a vector of
the reciprocals of the mode timescales and a matrix with the
corresponding spatial mode functions.

	eps (float) – the cutoff threshold in relative importance below which modes
are truncated

	mem_limit (int) – parameter governs whether the fast (but memory intense) method
or the slow method is used

	freqs (np.ndarray of complex or None (default)) – if None, returns the steady state impedance matrix, if
a array of complex numbers, returns the impedance matrix for
each Fourrier frequency in the array

	Returns

	the impedance matrix, steady state if freqs is None, the
frequency dependent impedance matrix if freqs is given, with
the frequency dependence at the first dimension [MOhm]

	Return type

	np.ndarray of floats (ndim = 2 or 3)

neat.SOVTree.constructNET

	
SOVTree.constructNET(dz=50.0, dx=10.0, eps=0.0001, use_hist=False, add_lin_terms=True, improve_input_impedance=False, pprint=False)

	Construct a Neural Evaluation Tree (NET) for this cell

	Parameters

	
	dz (float) – the impedance step for the NET model derivation

	dx (float) – the distance step to evaluate the impedance matrix

	eps (float) – the cutoff threshold in relative importance below which modes
are truncated

	use_hist (bool) – whether or not to use histogram segmentations to find well
separated parts of the dendritic tree (such ass apical tree)

	add_lin_terms – take into account that the optained NET will be used in conjunction
with linear terms

	Returns

	The neural evaluation tree (Wybo et al., 2019) associated with the
morphology.

	Return type

	neat.NETree

neat.SOVTree.computeLinTerms

	
SOVTree.computeLinTerms(net, sov_data=None, eps=0.0001)

	Construct linear terms for net so that transfer impedance to soma is
exactly matched

	Parameters

	
	net (neat.NETree) – the neural evaluation tree (NET)

	sov_data (None or tuple of mode matrices) – If sov_data is not None, it is a tuple of a vector of
the reciprocals of the mode timescales and a matrix with the
corresponding spatial mode functions.

	eps (float) – the cutoff threshold in relative importance below which modes
are truncated

	Returns

	lin_terms – the kernels associated with linear terms of the NET, keys are
indices of their corresponding location stored inder ‘net eval’

	Return type

	dict of {int: neat.Kernel}

neat.GreensTree.removeExpansionPoints

	
GreensTree.removeExpansionPoints()

	Remove expansion points from all nodes in the tree

neat.GreensTree.setImpedance

	
GreensTree.setImpedance(*args, **kwargs)

	Set the boundary impedances for each node in the tree

	Parameters

	
	freqs (np.ndarray (dtype=complex, ndim=1)) – frequencies at which the impedances will be evaluated [Hz]

	use_conc (bool) – whether or not to incorporate concentrations in the calculation

	pprint (bool (default False)) – whether or not to print info on the progression of the algorithm

neat.GreensTree.calcZF

	
GreensTree.calcZF(*args, **kwargs)

	Computes the transfer impedance between two locations for all frequencies
in self.freqs.

	Parameters

	
	loc1 (dict, tuple or :class:MorphLoc) – One of two locations between which the transfer impedance is computed

	loc2 (dict, tuple or :class:MorphLoc) – One of two locations between which the transfer impedance is computed

	Returns

	The transfer impedance [MOhm] as a function of frequency

	Return type

	nd.ndarray (dtype = complex, ndim = 1)

neat.GreensTree.calcImpedanceMatrix

	
GreensTree.calcImpedanceMatrix(*args, **kwargs)

	Computes the impedance matrix of a given set of locations for each
frequency stored in self.freqs.

	Parameters

	
	locarg (list of locations or string) – if list of locations, specifies the locations for which the
impedance matrix is evaluated, if string, specifies the
name under which a set of location is stored

	explicit_method (bool, optional (default True)) – if False, will use the transitivity property of the impedance
matrix to further optimize the computation.

	Returns

	the impedance matrix, first dimension corresponds to the
frequency, second and third dimensions contain the impedance
matrix [MOhm] at that frequency

	Return type

	np.ndarray (dtype = self.freqs.dtype, ndim = 3)

neat.GreensNode.setExpansionPoint

	
GreensNode.setExpansionPoint(channel_name, statevar)

	Set the choice for the state variables of the ion channel around which
to linearize.

Note that when adding an ion channel to the node, the default expansion
point setting is to linearize around the asymptotic values for the state
variables at the equilibrium potential store in self.e_eq.
Hence, this function only needs to be called to change that setting.

	Parameters

	
	channel_name (string) – the name of the ion channel

	statevar (dict) – The expansion points for each of the ion channel state variables

neat.NeuronSimTree.initModel

	
NeuronSimTree.initModel(dt=0.025, t_calibrate=0.0, v_init=- 75.0, factor_lambda=1.0, pprint=False)

	Initialize hoc-objects to simulate the neuron model implemented by this
tree.

	Parameters

	
	dt (float (default is .025 ms)) – Timestep of the simulation

	t_calibrate (float (default 0. ms)) – The calibration time; time model runs without input to reach its
equilibrium state before the true simulation starts

	v_init (float (default -75. mV)) – The initial voltage at which the model is initialized

	factor_lambda (float or int (default 1.)) – If int, the number of segments per section. If float, multiplies the
number of segments given by the standard lambda rule (Carnevale, 2004)
to give the number of compartments simulated (default value 1. gives
the number given by the lambda rule)

	pprint (bool (default False)) – Whether or not to print info on the NEURON model’s creation

neat.NeuronSimTree.deleteModel

	
NeuronSimTree.deleteModel()

	Delete all stored hoc-objects

neat.NeuronSimTree.addShunt

	
NeuronSimTree.addShunt(loc, g, e_r)

	Adds a static conductance at a given location

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the shunt.

	g (float) – The conductance of the shunt (uS)

	e_r (float) – The reversal potential of the shunt (mV)

neat.NeuronSimTree.addDoubleExpCurrent

	
NeuronSimTree.addDoubleExpCurrent(loc, tau1, tau2)

	Adds a double exponential input current at a given location

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	tau1 (float) – Rise time of the current waveform (ms)

	tau2 (float) – Decay time of the current waveform (ms)

neat.NeuronSimTree.addExpSynapse

	
NeuronSimTree.addExpSynapse(loc, tau, e_r)

	Adds a single-exponential conductance-based synapse

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	tau (float) – Decay time of the conductance window (ms)

	e_r (float) – Reversal potential of the synapse (mV)

neat.NeuronSimTree.addDoubleExpSynapse

	
NeuronSimTree.addDoubleExpSynapse(loc, tau1, tau2, e_r)

	Adds a double-exponential conductance-based synapse

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	tau1 (float) – Rise time of the conductance window (ms)

	tau2 (float) – Decay time of the conductance window (ms)

	e_r (float) – Reversal potential of the synapse (mV)

neat.NeuronSimTree.addNMDASynapse

	
NeuronSimTree.addNMDASynapse(loc, tau, tau_nmda, e_r=0.0, nmda_ratio=1.7)

	Adds a single-exponential conductance-based synapse with an AMPA and an
NMDA component

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	tau (float) – Decay time of the AMPA conductance window (ms)

	tau_nmda (float) – Decay time of the NMDA conductance window (ms)

	e_r (float (optional, default 0. mV)) – Reversal potential of the synapse (mV)

	nmda_ratio (float (optional, default 1.7)) – The ratio of the NMDA over AMPA component. Means that the maximum of
the NMDA conductance window is nmda_ratio times the maximum of
the AMPA conductance window.

neat.NeuronSimTree.addDoubleExpNMDASynapse

	
NeuronSimTree.addDoubleExpNMDASynapse(loc, tau1, tau2, tau1_nmda, tau2_nmda, e_r=0.0, nmda_ratio=1.7)

	Adds a double-exponential conductance-based synapse with an AMPA and an
NMDA component

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	tau1 (float) – Rise time of the AMPA conductance window (ms)

	tau2 (float) – Decay time of the AMPA conductance window (ms)

	tau1_nmda (float) – Rise time of the NMDA conductance window (ms)

	tau2_nmda (float) – Decay time of the NMDA conductance window (ms)

	e_r (float (optional, default 0. mV)) – Reversal potential of the synapse (mV)

	nmda_ratio (float (optional, default 1.7)) – The ratio of the NMDA over AMPA component. Means that the maximum of
the NMDA conductance window is nmda_ratio times the maximum of
the AMPA conductance window.

neat.NeuronSimTree.addIClamp

	
NeuronSimTree.addIClamp(loc, amp, delay, dur)

	Injects a DC current step at a given lcoation

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	amp (float) – The amplitude of the current (nA)

	delay (float) – The delay of the current step onset (ms)

	dur (float) – The duration of the current step (ms)

neat.NeuronSimTree.addSinClamp

	
NeuronSimTree.addSinClamp(loc, amp, delay, dur, bias, freq, phase)

	Injects a sinusoidal current at a given lcoation

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	amp (float) – The amplitude of the current (nA)

	delay (float) – The delay of the current onset (ms)

	dur (float) – The duration of the current (ms)

	bias (float) – Constant baseline added to the sinusoidal waveform (nA)

	freq (float) – Frequency of the sinusoid (Hz)

	phase (float) – Phase of the sinusoid (rad)

neat.NeuronSimTree.addOUClamp

	
NeuronSimTree.addOUClamp(loc, tau, mean, stdev, delay, dur, seed=None)

	Injects a Ornstein-Uhlenbeck current at a given lcoation

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the current.

	tau (float) – Time-scale of the OU process (ms)

	mean (float) – Mean of the OU process (nA)

	stdev (float) – Standard deviation of the OU process (nA)

	delay (float) – The delay of current onset from the start of the simulation (ms)

	dur (float) – The duration of the current input (ms)

	seed (int, optional) – Seed for the random number generator

neat.NeuronSimTree.addOUconductance

	
NeuronSimTree.addOUconductance(loc, tau, mean, stdev, e_r, delay, dur, seed=None)

	Injects a Ornstein-Uhlenbeck conductance at a given location

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the conductance.

	tau (float) – Time-scale of the OU process (ms)

	mean (float) – Mean of the OU process (uS)

	stdev (float) – Standard deviation of the OU process (uS)

	e_r (float) – Reversal of the current (mV)

	delay (float) – The delay of current onset from the start of the simulation (ms)

	dur (float) – The duration of the current input (ms)

	seed (int, optional) – Seed for the random number generator

neat.NeuronSimTree.addOUReversal

	
NeuronSimTree.addOUReversal(loc, tau, mean, stdev, g_val, delay, dur, seed=None)

	

neat.NeuronSimTree.addVClamp

	
NeuronSimTree.addVClamp(loc, e_c, dur)

	Adds a voltage clamp at a given location

	Parameters

	
	loc (dict, tuple or neat.MorphLoc) – The location of the conductance.

	e_c (float) – The clamping voltage (mV)

	dur (float, ms) – The duration of the voltage clamp

neat.NeuronSimTree.setSpikeTrain

	
NeuronSimTree.setSpikeTrain(syn_index, syn_weight, spike_times)

	Each hoc point process that receive spikes through should by appended to
the synapse stack (stored under the list self.syns).

Default NeuronSimTree point processes that are added to
self.syns are:
- self.addDoubleExpCurrent()
- self.addExpSyn()
- self.addDoubleExpSyn()
- self.addDoubleExpSyn()
- self.addNMDASynapse()
- self.addDoubleExpNMDASynapse()

With this function, these synapse can be set to receive a specific spike
train.

	Parameters

	
	syn_index (int) – index of the point process in the synapse stack

	syn_weight (float) – weight of the synapse (maximal value of the conductance window)

	spike_times (list or np.array of floats) – the spike times

neat.NeuronSimTree.run

	
NeuronSimTree.run(t_max, downsample=1, record_from_syns=False, record_from_iclamps=False, record_from_vclamps=False, record_from_channels=False, record_v_deriv=False, record_concentrations=[], pprint=False)

	Run the NEURON simulation. Records at all locations stored
under the name ‘rec locs’ on self (see MorphTree.storeLocs())

	Parameters

	
	t_max (float) – Duration of the simulation

	downsample (int (> 0)) – Records the state of the model every downsample time-steps

	record_from_syns (bool (default False)) – Record currents of synapstic point processes (in self.syns).
Accessible as np.ndarray in the output dict under key ‘i_syn’

	record_from_iclamps (bool (default False)) – Record currents of iclamps (in self.iclamps)
Accessible as np.ndarray in the output dict under key ‘i_clamp’

	record_from_vclamps (bool (default False)) – Record currents of vclamps (in self.vclamps)
Accessible as np.ndarray in the output dict under key ‘i_vclamp’

	record_from_channels (bool (default False)) – Record channel state variables from neat defined channels in self,
at locations stored under ‘rec locs’
Accessible as np.ndarray in the output dict under key ‘chan’

	record_v_deriv (bool (default False)) – Record voltage derivative at locations stored under ‘rec locs’
Accessible as np.ndarray in the output dict under key ‘dv_dt’

	record_from_concentrations (bool (default False)) – Record ion concentration at locations stored under ‘rec locs’
Accessible as np.ndarray in the output dict with as key the ion’s
name

	Returns

	Dictionary with the results of the simulation. Contains time and
voltage as np.ndarray at locations stored under the name ‘
rec locs’, respectively with keys ‘t’ and ‘v_m’. Also contains
traces of other recorded variables if the option to record them was
set to True

	Return type

	dict

neat.NeuronSimTree.calcEEq

	
NeuronSimTree.calcEEq(t_dur=100.0, set_e_eq=True)

	Compute the equilibrium potentials in the middle (x=0.5) of each node.

	Parameters

	
	t_dur (float (optional, default 100. ms)) – The duration of the simulation

	set_e_eq (bool (optional, default True)) – Store the equilibrium potential as the PhysNode.e_eq attribute

neat.CompartmentFitter.setCTree

	
CompartmentFitter.setCTree(loc_arg, extend_w_bifurc=True)

	Store an initial neat.CompartmentTree, providing a tree
structure scaffold for the fit for a given set of locations. The
locations are also stored on self.tree under the name ‘fit locs’

	Parameters

	
	loc_arg (list of locations or string (see documentation of) – MorphTree._convertLocArgToLocs() for details)
The compartment locations

	extend_w_bifurc (bool (optional, default True)) – To extend the compartment locations with all intermediate
bifurcations (see documentation of
MorphTree.extendWithBifurcationLocs()).

neat.CompartmentFitter.fitModel

	
CompartmentFitter.fitModel(loc_arg, alpha_inds=[0], use_all_channels_for_passive=True, recompute=False, pprint=False, parallel=False)

	Runs the full fit for a set of locations (the location are automatically
extended with the bifurcation locs)

	Parameters

	
	loc_arg (list of locations or string (see documentation of) – MorphTree._convertLocArgToLocs() for details)
The compartment locations

	alpha_inds (list of ints) – Indices of all mode time-scales to be included in the fit

	use_all_channels_for_passive (bool (optional, default True)) – Uses all channels in the tree to compute coupling conductances

	recompute (bool) – whether to force recomputing the impedances

	pprint (bool) – whether to print information

	parallel (bool) – whether the models are evaluated in parallel

	Returns

	The reduced tree containing the fitted parameters

	Return type

	neat.CompartmentTree

neat.CompartmentFitter.checkPassive

	
CompartmentFitter.checkPassive(loc_arg, alpha_inds=[0], n_modes=5, use_all_channels_for_passive=True, force_tau_m_fit=False, recompute=False, pprint=False)

	Checks the impedance kernels of the passive model.

	Parameters

	
	loc_arg (list of locations or string (see documentation of) – MorphTree._convertLocArgToLocs() for details)
The compartment locations

	alpha_inds (list of ints) – Indices of all mode time-scales to be included in the fit

	n_modes (int) – The number of eigen modes that are shown

	use_all_channels_for_passive (bool) – Uses all channels in the tree to compute coupling conductances

	force_tau_m_fit (bool) – Force using the local membrane time-scale for capacitance fit

	recompute (bool) – whether to force recomputing the impedances

	pprint (bool) – is verbose if True

	Returns

	

	Return type

	None

neat.CompartmentFitter.getKernels

	
CompartmentFitter.getKernels(recompute=False, pprint=False)

	Returns the impedance kernels as a double nested list of “neat.Kernel”.
The element at the position i,j represents the transfer impedance kernel
between compartments i and j.

	Parameters

	
	recompute (bool) – Force recomputing the SOV expansion if True

	pprint (bool) – Is verbose if True

	Returns

	
	k_orig (list of list of neat.Kernel) – The kernels of the full model

	k_comp (list of list of neat.Kernel) – The kernels of the reduced model

neat.CompartmentFitter.plotKernels

	
CompartmentFitter.plotKernels(alphas=None, phimat=None, t_arr=None, recompute=False, pprint=False)

	Plots the impedance kernels.
The kernel at the position i,j represents the transfer impedance kernel
between compartments i and j.

	Parameters

	
	alphas (np.array) – The exponential coefficients, as follows from the SOV expansion

	phimat (np.ndarray (dim=2)) – The matrix to compute the exponential prefactors, as follows from
the SOV expansion

	t_arr (np.array) – The time-points at which the to be plotted kernels are evaluated.
Default is np.linspace(0.,200.,int(1e3))

	recompute (bool) – Force recomputing the SOV expansion if True (only if alphas or
phimat are None)

	pprint (bool) – Is verbose if True

	Returns

	
	k_orig (list of list of neat.Kernel) – The kernels of the full model

	k_comp (list of list of neat.Kernel) – The kernels of the reduced model

neat.CompartmentFitter.createTreeGF

	
CompartmentFitter.createTreeGF(channel_names=[])

	Create a FitTreeGF copy of the old tree, but only with the
channels in channel_names. Leak ‘L’ is included in the tree by
default.

	Parameters

	channel_names (list of strings) – List of channel names of the channels that are to be included in the
new tree.

	Returns

	

	Return type

	FitTreeGF()

neat.CompartmentFitter.createTreeSOV

	
CompartmentFitter.createTreeSOV(eps=1.0)

	Create a SOVTree copy of the old tree

	Parameters

	channel_names (list of strings) – List of channel names of the channels that are to be included in the
new tree

	Returns

	

	Return type

	neat.tools.fittools.compartmentfitter.FitTreeSOV

neat.CompartmentFitter.fitPassiveLeak

	
CompartmentFitter.fitPassiveLeak(recompute=False, pprint=True)

	Fit leak only. Coupling conductances have to have been fit already.

	Parameters

	
	recompute (bool (optional, defaults to False)) – whether to force recomputing the impedances

	pprint (bool (optional, defaults to False)) – whether to print information

neat.CompartmentFitter.fitPassive

	
CompartmentFitter.fitPassive(use_all_channels=True, recompute=False, pprint=False)

	Fit the steady state passive model, consisting only of leak and coupling
conductances, but ensure that the coupling conductances takes the passive
opening of all channels into account

	Parameters

	
	use_all_channels (bool (optional)) – use leak at rest of all channels combined in the passive fit (passive
leak has to be refit after capacitance fit)

	recompute (bool (optional, defaults to False)) – whether to force recomputing the impedances

	pprint (bool (optional, defaults to False)) – whether to print information

neat.CompartmentFitter.evalChannel

	
CompartmentFitter.evalChannel(channel_name, recompute=False, pprint=False, parallel=True, max_workers=None)

	Evaluate the impedance matrix for the model restricted to a single ion
channel type.

	Parameters

	
	channel_name (string) – The name of the ion channel under consideration

	recompute (bool (optional, defaults to False)) – whether to force recomputing the impedances

	pprint (bool (optional, defaults to False)) – whether to print information

	parallel (bool (optional, defaults to True)) – whether the models are evaluated in parallel

	Returns

	

	Return type

	fit_mats

neat.CompartmentFitter.fitChannels

	
CompartmentFitter.fitChannels(recompute=False, pprint=False, parallel=True)

	Fit the active ion channel parameters

	Parameters

	
	recompute (bool (optional, defaults to False)) – whether to force recomputing the impedances

	pprint (bool (optional, defaults to False)) – whether to print information

	parallel (bool (optional, defaults to True)) – whether the models are evaluated in parallel

neat.CompartmentFitter.fitCapacitance

	
CompartmentFitter.fitCapacitance(inds=[0], check_fit=True, force_tau_m_fit=False, recompute=False, pprint=False, pplot=False)

	Fit the capacitances of the model to the largest SOV time scale

	Parameters

	
	inds (list of int (optional, defaults to [0])) – indices of eigenmodes used in the fit. Default is [0], indicating
the largest eigenmode

	check_fit (bool (optional, default True)) – Check whether the largest eigenmode of the reduced model is within
tolerance of the largest eigenmode of the full tree. If not,
capacitances are set to mach membrane time scale

	force_tau_m_fit (bool (optional, default False)) – force capacitance fit through membrance time scale matching

	recompute (bool (optional, defaults to False)) – whether to force recomputing the impedances

	pprint (bool (optional, defaults to False)) – whether to print information

	pplot (bool (optional, defaults to False)) – whether to plot the eigenmode timescales

neat.CompartmentFitter.setEEq

	
CompartmentFitter.setEEq(t_max=500.0, dt=0.1, factor_lambda=10.0)

	Set equilibrium potentials, measured from neuron simulation. Sets the
v_eqs_tree and v_eqs_fit attributes, respectively containing the
equilibrium potentials at (the middle of) each node in the original
tree and at each of the fit locations

	Parameters

	
	t_max (float) – duration of the neuron simulation

	dt (float) – time-step of the neuron simulation

	factor_lambda (int of float) – if int, signifies the number of segments per section. If float,
multiplies the number of segments given by the lambda rule with this
number

neat.CompartmentFitter.getEEq

	
CompartmentFitter.getEEq(e_eqs_type, **kwargs)

	Get equilibrium potentials. Specify
v_eqs_tree and v_eqs_fit attributes, respectively containing the
equilibrium potentials at (the middle of) each node in the original
tree and at each of the fit locations

	Parameters

	
	e_eqs_type ('tree' or 'fit') – For ‘tree’, returns the v_eqs_tree attribute, containing the
equilibrium potentials at (the middle of) each node in the original
tree. For ‘fit’, returns the v_eqs_fit attribute, containing the
equilibrium potentials at each of the fit locations.

	kwargs (When v_eqs_tree or v_eqs_fit, have not been set, calls) – ::func::self.setEEq() with these kwargs

neat.CompartmentFitter.fitEEq

	
CompartmentFitter.fitEEq(**kwargs)

	Fits the leak potentials of the reduced model to yield the same
equilibrium potentials as the full model

	Parameters

	kwargs (When v_eqs_tree or v_eqs_fit, have not been set, calls) – ::func::self.setEEq() with these kwargs

neat.CompartmentFitter.fitSynRescale

	
CompartmentFitter.fitSynRescale(c_locarg, s_locarg, comp_inds, g_syns, e_revs, fit_impedance=False, channel_names=None, recompute=False)

	Computes the rescaled conductances when synapses are moved to compartment
locations, assuming a given average conductance for each synapse.

	Parameters

	
	c_locarg (list of locations or string (see documentation of) – MorphTree._convertLocArgToLocs() for details)
The compartment locations

	s_locarg (list of locations or string (see documentation of) – MorphTree._convertLocArgToLocs() for details)
The synapse locations

	comp_inds (list or numpy.array of ints) – for each location in [s_locarg], gives the index of the compartment
location in [c_locarg] to which the synapse is assigned

	g_syns (list or numpy.array of floats) – The average conductances for each synapse

	e_revs (list or numpy.array of floats) – The reversal potential of each synapse

	fit_impdedance (bool (optional, default False)) – Whether to also use the reproduction of the rescaled impedance matrix
as target.

	channel_names (list of str or None (default)) – List of ion channels to be included in impedance matrix calculation.
None includes all ion channels

	recompute (bool (defaults is False)) – Whether or not to recompute the impedance tree for this channel
configuration

	Returns

	g_resc – The rescale values for the synaptic weights

	Return type

	numpy.array of floats

neat.IonChannel.setDefaultParams

	
IonChannel.setDefaultParams(**kwargs)

	
	**kwargs
	Default values for temperature (temp), reversal (e)

neat.IonChannel.computePOpen

	
IonChannel.computePOpen(v, **kwargs)

	Compute the open probability of the ion channel

	Parameters

	
	v (float or np.ndarray of float) – The voltage at which to evaluate the open probability

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The open probability

	Return type

	float or np.ndarray of float

neat.IonChannel.computeDerivatives

	
IonChannel.computeDerivatives(v, **kwargs)

	Compute:
(i) the derivatives of the open probability to the state variables
(ii) The derivatives of state functions to the voltage
(iii) The derivatives of state functions to the state variables

	Parameters

	
	v (float or np.ndarray) – The voltage at which to evaluate the open probability

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The derivatives

	Return type

	tuple of three floats or three `np.ndarray`s of float

neat.IonChannel.computeDerivativesConc

	
IonChannel.computeDerivativesConc(v, **kwargs)

	Compute the derivatives of the state functions to the concentrations

	Parameters

	
	v (float or np.ndarray) – The voltage at which to evaluate the open probability

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The derivatives

	Return type

	tuple of three floats or three `np.ndarray`s of float

neat.IonChannel.computeVarinf

	
IonChannel.computeVarinf(v)

	Compute the asymptotic values for the state variables at a given
activation level

	Parameters

	v (float or np.ndarray) – The voltage at which to evaluate the open probability

	Returns

	The asymptotic activations, items are of same type (and shape) as v

	Return type

	dict of np.ndarray of dict of float

neat.IonChannel.computeTauinf

	
IonChannel.computeTauinf(v)

	Compute the time-scales for the state variables at a given
activation level

	Parameters

	v (float or np.ndarray) – The voltage at which to evaluate the open probability

	Returns

	The asymptotic activations, items are of same type (and shape) as v

	Return type

	dict of np.ndarray of dict of float

neat.IonChannel.computeLinear

	
IonChannel.computeLinear(v, freqs, **kwargs)

	Combute the contributions of the state variables to the linearized
channel current

	Parameters

	
	v (float or np.ndarray) – The voltage [mV] at which to evaluate the open probability

	float (freqs) – The frequencies [Hz] at which to evaluate the linearized contribution

	complex – The frequencies [Hz] at which to evaluate the linearized contribution

	np.ndarray of float or complex (or) – The frequencies [Hz] at which to evaluate the linearized contribution

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The linearized current. Shape is dimension of freqs followed by
the dimensions of v.

	Return type

	float, complex or np.ndarray of float or complex

neat.IonChannel.computeLinearConc

	
IonChannel.computeLinearConc(v, freqs, ion, **kwargs)

	Combute the contributions of the state variables to the linearized
channel current

	Parameters

	
	v (float or np.ndarray) – The voltage [mV] at which to evaluate the open probability

	freqs (float, complex, or np.ndarray of float or complex:) – The frequencies [Hz] at which to evaluate the linearized contribution

	ion (str) – The ion name for which to compute the linearized contribution

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The linearized current. Shape is dimension of freqs followed by
the dimensions of v.

	Return type

	float, complex or np.ndarray of float or complex

neat.IonChannel.computeLinSum

	
IonChannel.computeLinSum(v, freqs, e=None, **kwargs)

	Combute the linearized channel current contribution
(without concentributions from the concentration - see computeLinConc())

	Parameters

	
	v (float or np.ndarray) – The voltage [mV] at which to evaluate the open probability

	freqs (float, complex, or np.ndarray of float or complex:) – The frequencies [Hz] at which to evaluate the linearized contribution

	e (float or None) – The reversal potential of the channel. Defaults to the value stored
in self.default_params[‘e’] if not provided.

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The linearized current. Shape is dimension of freqs followed by
the dimensions of v.

	Return type

	float, complex or np.ndarray of float or complex

neat.IonChannel.computeLinConc

	
IonChannel.computeLinConc(v, freqs, ion, e=None, **kwargs)

	Combute the linearized channel current contribution from the concentrations

	Parameters

	
	v (float or np.ndarray) – The voltage [mV] at which to evaluate the open probability

	freqs (float, complex, or np.ndarray of float or complex:) – The frequencies [Hz] at which to evaluate the linearized contribution

	ion (str) – The ion name for which to compute the linearized contribution

	e (float or None) – The reversal potential of the channel. Defaults to the value stored
in self.default_params[‘e’] if not provided.

	**kwargs – Optional values for the state variables and concentrations.
Broadcastable to v if provided

	Returns

	The linearized current. Shape is dimension of freqs followed by
the dimensions of v.

	Return type

	float, complex or np.ndarray of float or complex

neat.FourrierTools.__call__

	
FourrierTools.__call__(arr)

	Evaluate the Fourrier transform of arr

	Parameters

	arr (np.array) – Should have the same length as self.t

	Returns

	
	s (np.array) – the frequency points at which the Fourrier
transform is evaluated (in Hz)

	farr (np.array) – the Fourrier transform of arr

neat.FourrierTools.ft

	
FourrierTools.ft(arr)

	Evaluate the Fourrier transform of arr

	Parameters

	arr (np.array) – Should have the same length as self.t

	Returns

	
	s (np.array) – the frequency points at which the Fourrier
transform is evaluated (in Hz)

	farr (np.array) – the Fourrier transform of arr

neat.FourrierTools.ftInv

	
FourrierTools.ftInv(arr)

	Evaluate the inverse Fourrier transform of arr

	Parameters

	arr (np.array) – Should have the same length as self.s

	Returns

	
	t (np.array) – the time points at which the inverse Fourrier
transform is evaluated (in ms)

	tarr (np.array) – the Fourrier transform of arr

Developer Guide

	Developer overview

	Code of Conduct
	Introduction

	Specific Guidelines

	Diversity Statement

	Reporting Guidelines

	Incident reporting resolution & Code of Conduct enforcement

	Endnotes

	Working with NEAT source code
	Introduction

	Install git

	Following the latest source

	Making a patch

	Git for development

	git resources

Developer overview

Willem Wybo
Jakob Jordan
Benjamin Ellenberger

Code of Conduct

Introduction

This code of conduct applies to all spaces managed by the NEAT project,
including all public and private mailing lists, issue trackers, wikis, and
any other communication channel used by our community.

This code of conduct should be honored by everyone who participates in
the NEAT community formally or informally, or claims any affiliation with the
project, in any project-related activities and especially when representing the
project, in any role.

This code is not exhaustive or complete. It serves to distill our common
understanding of a collaborative, shared environment and goals. Please try to
follow this code in spirit as much as in letter, to create a friendly and
productive environment that enriches the surrounding community.

Specific Guidelines

We strive to:

	Be open. We invite anyone to participate in our community. We prefer to use
public methods of communication for project-related messages, unless
discussing something sensitive. This applies to messages for help or
project-related support, too; not only is a public support request much more
likely to result in an answer to a question, it also ensures that any
inadvertent mistakes in answering are more easily detected and corrected.

	Be empathetic, welcoming, friendly, and patient. We work together to resolve
conflict, and assume good intentions. We may all experience some frustration
from time to time, but we do not allow frustration to turn into a personal
attack. A community where people feel uncomfortable or threatened is not a
productive one.

	Be collaborative. Our work will be used by other people, and in turn we will
depend on the work of others. When we make something for the benefit of the
project, we are willing to explain to others how it works, so that they can
build on the work to make it even better. Any decision we make will affect
users and colleagues, and we take those consequences seriously when making
decisions.

	Be inquisitive. Nobody knows everything! Asking questions early avoids many
problems later, so we encourage questions, although we may direct them to
the appropriate forum. We will try hard to be responsive and helpful.

	Be careful in the words that we choose. We are careful and respectful in
our communication and we take responsibility for our own speech. Be kind to
others. Do not insult or put down other participants. We will not accept
harassment or other exclusionary behaviour, such as:

	Violent threats or language directed against another person.

	Sexist, racist, or otherwise discriminatory jokes and language.

	Posting sexually explicit or violent material.

	Posting (or threatening to post) other people’s personally identifying information (“doxing”).

	Sharing private content, such as emails sent privately or non-publicly,
or unlogged forums such as IRC channel history, without the sender’s consent.

	Personal insults, especially those using racist or sexist terms.

	Unwelcome sexual attention.

	Excessive profanity. Please avoid swearwords; people differ greatly in their sensitivity to swearing.

	Repeated harassment of others. In general, if someone asks you to stop, then stop.

	Advocating for, or encouraging, any of the above behaviour.

Diversity Statement

The NEAT project welcomes and encourages participation by everyone. We are
committed to being a community that everyone enjoys being part of. Although
we may not always be able to accommodate each individual’s preferences, we try
our best to treat everyone kindly.

No matter how you identify yourself or how others perceive you: we welcome you.
Though no list can hope to be comprehensive, we explicitly honour diversity in:
age, culture, ethnicity, genotype, gender identity or expression, language,
national origin, neurotype, phenotype, political beliefs, profession, race,
religion, sexual orientation, socioeconomic status, subculture and technical
ability.

Though we welcome people fluent in all languages, NEAT development is
conducted in English.

Standards for behaviour in the NEAT community are detailed in the Code of
Conduct above. Participants in our community should uphold these standards
in all their interactions and help others to do so as well (see next section).

Reporting Guidelines

We know that it is painfully common for internet communication to start at or
devolve into obvious and flagrant abuse. We also recognize that sometimes
people may have a bad day, or be unaware of some of the guidelines in this Code
of Conduct. Please keep this in mind when deciding on how to respond to a
breach of this Code.

For clearly intentional breaches, report those to the Code of Conduct committee
(see below). For possibly unintentional breaches, you may reply to the person
and point out this code of conduct (either in public or in private, whatever is
most appropriate). If you would prefer not to do that, please feel free to
report to the Code of Conduct Committee directly, or ask the Committee for
advice, in confidence.

You can report issues to the NEAT Code of Conduct committee.

If your report involves any members of the committee, or if they feel they have
a conflict of interest in handling it, then they will recuse themselves from
considering your report. Alternatively, if for any reason you feel
uncomfortable making a report to the committee, then you can also contact:

	Senior NumFOCUS staff [https://numfocus.org/code-of-conduct#persons-responsible]: conduct@numfocus.org.

Incident reporting resolution & Code of Conduct enforcement

We will investigate and respond to all complaints. The NEAT Code of Conduct
Committee will protect the identity of the reporter, and treat the content of
complaints as confidential (unless the reporter agrees otherwise).

In case of severe and obvious breaches, e.g., personal threat or violent, sexist
or racist language, we will immediately disconnect the originator from NEAT
communication channels.

In cases not involving clear severe and obvious breaches of this code of
conduct, the process for acting on any received code of conduct violation
report will be:

	acknowledge report is received

	reasonable discussion/feedback

	mediation (if feedback didn’t help, and only if both reporter and reportee agree to this)

	enforcement via transparent decision by the Code of Conduct Committee

The committee will respond to any report as soon as possible, and at most
within 72 hours.

Endnotes

This document is adapted from:

	SciPy Code of Conduct [http://scipy.github.io/devdocs/dev/conduct/code_of_conduct.html]

Working with NEAT source code

Contents:

	Introduction

	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Making a patch
	Making patches

	Moving from patching to development

	Git for development
	Making your own copy (fork) of neat

	Set up your fork

	Configure git

	Development workflow

	Maintainer workflow

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

Introduction

These pages describe a git [https://git-scm.com/] and github [https://github.com] workflow for the neat [http://neat.github.io]
project.

There are several different workflows here, for different ways of
working with neat.

This is not a comprehensive git reference, it’s just a workflow for our
own project. It’s tailored to the github hosting service. You may well
find better or quicker ways of getting stuff done with git, but these
should get you started.

For general resources for learning git, see git resources.

Install git

Overview

	Debian / Ubuntu

	sudo apt-get install git

	Fedora

	sudo dnf install git

	Windows

	Download and install msysGit [https://git-scm.com/download/win]

	OS X

	Use the git-osx-installer [https://git-scm.com/download/mac]

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help [https://help.github.com]

There are good instructions here: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Following the latest source

These are the instructions if you just want to follow the latest
neat source, but you don’t need to do any development for now.

The steps are:

	Install git

	get local copy of the neat github [https://github.com/neat/neat] git repository

	update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/neat/neat.git

You now have a copy of the code tree in the new neat directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd neat
git pull

The tree in neat will now have the latest changes from the initial
repository.

Making a patch

You’ve discovered a bug or something else you want to change
in neat [http://neat.github.io] .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here
we explain how. Making a patch is the simplest and quickest,
but if you’re going to be doing anything more than simple
quick things, please consider following the
Git for development model instead.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/neat/neat.git
make a branch for your patching
cd neat
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the neat
mailing list [http://groups.google.com/group/neat-discuss/] — where we will thank you warmly.

In detail

	Tell git who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

	If you don’t already have one, clone a copy of the
neat [http://neat.github.io] repository:

git clone git://github.com/neat/neat.git
cd neat

	Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

	Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line. The a flag — you can just take on faith —
or see why the -a flag? [http://gitready.com/beginner/2009/01/18/the-staging-area.html].

	When you have finished, check you have committed all your
changes:

git status

	Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the neat mailing list [http://groups.google.com/group/neat-discuss/].

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or
more feature branches, you will probably want to switch to
development mode. You can do this with the repository you
have.

Fork the neat [http://neat.github.io] repository on github — Making your own copy (fork) of neat.
Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/neat.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the
Development workflow.

Git for development

Contents:

	Making your own copy (fork) of neat
	Set up and configure a github account

	Create your own forked copy of neat

	Set up your fork
	Overview

	In detail

	Configure git
	Overview

	In detail

	Development workflow
	Workflow summary

	Consider deleting your master branch

	Update the mirror of trunk

	Make a new feature branch

	The editing workflow

	Ask for your changes to be reviewed or merged

	Some other things you might want to do

	Maintainer workflow
	Integrating changes

Making your own copy (fork) of neat

You need to do this only once. The instructions here are very similar
to the instructions at https://help.github.com/forking/ — please see
that page for more detail. We’re repeating some of it here just to give the
specifics for the neat [http://neat.github.io] project, and to suggest some default names.

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see
the Generating SSH keys help on github help [https://help.github.com].

Create your own forked copy of neat [http://neat.github.io]

	Log into your github account.

	Go to the neat [http://neat.github.io] github home at neat github [https://github.com/neat/neat].

	Click on the fork button:

[image: ../../_images/forking_button.png]
Now, after a short pause, you should find yourself at the home page for
your own forked copy of neat [http://neat.github.io].

Set up your fork

First you follow the instructions for Making your own copy (fork) of neat.

Overview

git clone git@github.com:your-user-name/neat.git
cd neat
git remote add upstream git://github.com/neat/neat.git

In detail

Clone your fork

	Clone your fork to the local computer with git clone
git@github.com:your-user-name/neat.git

	Investigate. Change directory to your new repo: cd neat. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream neat github [https://github.com/neat/neat] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd neat
git remote add upstream git://github.com/neat/neat.git

upstream here is just the arbitrary name we’re using to refer to the
main neat [http://neat.github.io] repository at neat github [https://github.com/neat/neat].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/neat/neat.git (fetch)
upstream git://github.com/neat/neat.git (push)
origin git@github.com:your-user-name/neat.git (fetch)
origin git@github.com:your-user-name/neat.git (push)

Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in
your home directory.

Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status
 stat = status
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [https://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

Fancy log output

This is a very nice alias to get a fancy log output; it should go in the
alias section of your .gitconfig file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45 minutes ago) [Matthew Brett]
* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/master (2 weeks ago) [Jonathan Terhorst]
|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/
* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2 weeks ago) [Corran Webster]
* 68f6752 - Initial implimentation of AxisIndexer - uses 'index_by' which needs to be changed to a call on an Axes object - this is all very sketchy right now. (2 weeks ago) [Corr
* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan Terhorst]
|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality with non-axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago) [Jonathan Terhorst]
| |\
| |/

Thanks to Yury V. Zaytsev for posting it.

Development workflow

You already have your own forked copy of the neat [http://neat.github.io] repository, by
following Making your own copy (fork) of neat. You have Set up your fork. You have configured
git by following Configure git. Now you are ready for some real work.

Workflow summary

In what follows we’ll refer to the upstream neat master branch, as
“trunk”.

	Don’t use your master branch for anything. Consider deleting it.

	When you are starting a new set of changes, fetch any changes from trunk,
and start a new feature branch from that.

	Make a new branch for each separable set of changes — “one task, one
branch” (ipython git workflow [https://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html]).

	Name your branch for the purpose of the changes - e.g.
bugfix-for-issue-14 or refactor-database-code.

	If you can possibly avoid it, avoid merging trunk or any other branches into
your feature branch while you are working.

	If you do find yourself merging from trunk, consider Rebasing on trunk

	Ask on the neat mailing list [http://groups.google.com/group/neat-discuss/] if you get stuck.

	Ask for code review!

This way of working helps to keep work well organized, with readable history.
This in turn makes it easier for project maintainers (that might be you) to see
what you’ve done, and why you did it.

See linux git workflow [https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] and ipython git workflow [https://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html] for some explanation.

Consider deleting your master branch

It may sound strange, but deleting your own master branch can help reduce
confusion about which branch you are on. See deleting master on github [https://matthew-brett.github.io/pydagogue/gh_delete_master.html] for
details.

Update the mirror of trunk

First make sure you have done Linking your repository to the upstream repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to
point to the right commit. For example, ‘trunk’ is the branch referred to by
(remote/branchname) upstream/master - and if there have been commits since
you last checked, upstream/master will change after you do the fetch.

Make a new feature branch

When you are ready to make some changes to the code, you should start a new
branch. Branches that are for a collection of related edits are often called
‘feature branches’.

Making an new branch for each set of related changes will make it easier for
someone reviewing your branch to see what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us
what the changes in the branch are for. For example add-ability-to-fly, or
buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github [https://github.com]
fork of neat [http://neat.github.io]. To do this, you git push [https://schacon.github.io/git/git-push.html] this new branch up to your
github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push
up to your own repo on github with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the
my-new-feature branch in the github repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

	Make some changes

	See which files have changed with git status (see git status [https://schacon.github.io/git/git-status.html]).
You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

	Check what the actual changes are with git diff (git diff [https://schacon.github.io/git/git-diff.html]).

	Add any new files to version control git add new_file_name (see
git add [https://schacon.github.io/git/git-add.html]).

	To commit all modified files into the local copy of your repo,, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on
faith — or see why the -a flag? [http://gitready.com/beginner/2009/01/18/the-staging-area.html] — and the helpful use-case
description in the tangled working copy problem [https://2ndscale.com/rtomayko/2008/the-thing-about-git]. The git commit [https://schacon.github.io/git/git-commit.html] manual
page might also be useful.

	To push the changes up to your forked repo on github, do a git
push (see git push [https://schacon.github.io/git/git-push.html]).

Ask for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

	Go to the URL of your forked repo, say
https://github.com/your-user-name/neat.

	Use the ‘Switch Branches’ dropdown menu near the top left of the page to
select the branch with your changes:

[image: ../../_images/branch_dropdown.png]

	Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a title for the set of changes, and some explanation of what you’ve
done. Say if there is anything you’d like particular attention for - like a
complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your
pull request message. This is still a good way of getting some preliminary
code review.

Some other things you might want to do

Delete a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

Note the colon : before my-unwanted-branch. See also:
https://help.github.com/articles/pushing-to-a-remote/#deleting-a-remote-branch-or-tag

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github.

First fork neat into your account, as from Making your own copy (fork) of neat.

Then, go to your forked repository github page, say
https://github.com/your-user-name/neat

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/neat.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [https://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github
repo.

Finally the Fancy log output lg alias will give you a reasonable text-based
graph of the repository.

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You
Update the mirror of trunk and Make a new feature branch called
cool-feature. At this stage trunk is at some commit, let’s call it E. Now
you make some new commits on your cool-feature branch, let’s call them A, B,
C. Maybe your changes take a while, or you come back to them after a while. In
the meantime, trunk has progressed from commit E to commit (say) G:

 A---B---C cool-feature
 /
D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you
remember that this here page sternly advises you not to do that, because the
history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk
might affect your changes, and you need to harmonize them. In this situation
you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to
the current state of trunk. In other words, in this case, it takes the
changes represented by A, B, C and replays them on top of G. After the rebase,
your history will look like this:

 A'--B'--C' cool-feature
 /
D---E---F---G trunk

See rebase without tears [https://matthew-brett.github.io/pydagogue/rebase_without_tears.html] for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream
go to the feature branch
git checkout cool-feature
make a backup in case you mess up
git branch tmp cool-feature
rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last
command can be written more succinctly as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn’t look good you may need to have a look at
Recovering from mess-ups.

If you have made changes to files that have also changed in trunk, this may
generate merge conflicts that you need to resolve - see the git rebase [https://schacon.github.io/git/git-rebase.html] man
page for some instructions at the end of the “Description” section. There is
some related help on merging in the git user manual - see resolving a merge [https://schacon.github.io/git/user-manual.html#resolving-a-merge].

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is
relatively straightforward to recover from such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note

Do this only for your own feature branches.

There’s an embarrassing typo in a commit you made? Or perhaps the you
made several false starts you would like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we
want to make the following changes:

	Rewrite the commit message for 13d7934 to something more sensible.

	Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for
13d7934, and (ii) collapse the last three commits into one. Now we
save and quit the editor.

Git will then immediately bring up an editor for editing the commit
message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
 2 files changed, 199 insertions(+), 66 deletions(-)
[detached HEAD 0f22701] Fix a few bugs + disable
 1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

Maintainer workflow

This page is for maintainers — those of us who merge our own or other
peoples’ changes into the upstream repository.

Being as how you’re a maintainer, you are completely on top of the basic stuff
in Development workflow.

The instructions in Linking your repository to the upstream repo add a remote that has read-only
access to the upstream repo. Being a maintainer, you’ve got read-write access.

It’s good to have your upstream remote have a scary name, to remind you that
it’s a read-write remote:

git remote add upstream-rw git@github.com:neat/neat.git
git fetch upstream-rw

Integrating changes

Let’s say you have some changes that need to go into trunk
(upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are
looking at someone’s changes like this:

git remote add someone git://github.com/someone/neat.git
git fetch someone
git branch cool-feature --track someone/cool-feature
git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The
rest of this section assumes you are on this branch.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
git fetch upstream-rw
rebase
git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you’ll have to close any
github pull requests manually, because github will not be able to detect the
changes have already been merged.

A long series of commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge --no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests
automatically.

Note the --no-ff above. This forces git to make a merge commit, rather than
doing a fast-forward, so that these set of commits branch off trunk then rejoin
the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have
the right commits:

git log --oneline --graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text
representation of the history graph. The second line shows the log of commits
excluding those that can be reached from trunk (upstream-rw/master), and
including those that can be reached from current HEAD (implied with the ..
at the end). So, it shows the commits unique to this branch compared to trunk.
The -p option shows the diff for these commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my-new-feature branch in this repository to the master
branch in the upstream-rw repository.

git resources

Tutorials and summaries

	github help [https://help.github.com] has an excellent series of how-to guides.

	The pro git book [https://git-scm.com/book/en/v2] is a good in-depth book on git.

	A git cheat sheet [https://help.github.com/git-cheat-sheets/] is a page giving summaries of common commands.

	The git user manual [https://schacon.github.io/git/user-manual.html]

	The git tutorial [https://schacon.github.io/git/gittutorial.html]

	git ready [http://gitready.com/] — a nice series of tutorials

	git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] — extended introduction with intermediate detail

	The git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] is an easy read explaining the concepts behind git.

	git foundation [https://matthew-brett.github.io/pydagogue/foundation.html] expands on the git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html].

	Fernando Perez’ git page — Fernando’s git page [http://www.fperez.org/py4science/git.html] — many
links and tips

	A good but technical page on git concepts [https://www.sbf5.com/~cduan/technical/git/]

	git svn crash course [https://git-scm.com/course/svn.html]: git for those of us used to subversion [http://subversion.tigris.org/]

Advanced git workflow

There are many ways of working with git; here are some posts on the
rules of thumb that other projects have come up with:

	Linus Torvalds on git management [https://web.archive.org/web/20090224195437/http://kerneltrap.org/Linux/Git_Management]

	Linus Torvalds on linux git workflow [https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] . Summary; use the git tools
to make the history of your edits as clean as possible; merge from
upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

	git add [https://schacon.github.io/git/git-add.html]

	git branch [https://schacon.github.io/git/git-branch.html]

	git checkout [https://schacon.github.io/git/git-checkout.html]

	git clone [https://schacon.github.io/git/git-clone.html]

	git commit [https://schacon.github.io/git/git-commit.html]

	git config [https://schacon.github.io/git/git-config.html]

	git diff [https://schacon.github.io/git/git-diff.html]

	git log [https://schacon.github.io/git/git-log.html]

	git pull [https://schacon.github.io/git/git-pull.html]

	git push [https://schacon.github.io/git/git-push.html]

	git remote [https://schacon.github.io/git/git-remote.html]

	git status [https://schacon.github.io/git/git-status.html]

Release Log

NEAT 0.9.1

Release date: 25 March 2021
Supports Python 3.5, 3.6, 3.7, and 3.8.

Release notes

See Announcement: NEAT 0.9.1.

NEAT 0.9.0

Release date: 20 March 2020
Supports Python 3.5, 3.6, 3.7, and 3.8.

Release notes

See Announcement: NEAT 0.9.0.

License

NEAT is distributed with the GNU General Public License.

 GNU GENERAL PUBLIC LICENSE

 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified

it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is

released under this License and any conditions added under section

7. This requirement modifies the requirement in section 4 to

"keep intact all notices".

 c) You must license the entire work, as a whole, under this

License to anyone who comes into possession of a copy. This

License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts,

regardless of how they are packaged. This License gives no

permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display

Appropriate Legal Notices; however, if the Program has interactive

interfaces that do not display Appropriate Legal Notices, your

work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by the

Corresponding Source fixed on a durable physical medium

customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by a

written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product

model, to give anyone who possesses the object code either (1) a

copy of the Corresponding Source for all the software in the

product that is covered by this License, on a durable physical

medium customarily used for software interchange, for a price no

more than your reasonable cost of physically performing this

conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the

written offer to provide the Corresponding Source. This

alternative is allowed only occasionally and noncommercially, and

only if you received the object code with such an offer, in accord

with subsection 6b.

 d) Convey the object code by offering access from a designated

place (gratis or for a charge), and offer equivalent access to the

Corresponding Source in the same way through the same place at no

further charge. You need not require recipients to copy the

Corresponding Source along with the object code. If the place to

copy the object code is a network server, the Corresponding Source

may be on a different server (operated by you or a third party)

that supports equivalent copying facilities, provided you maintain

clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the

Corresponding Source, you remain obligated to ensure that it is

available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided

you inform other peers where the object code and Corresponding

Source of the work are being offered to the general public at no

charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the

terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or

author attributions in that material or in the Appropriate Legal

Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or

requiring that modified versions of such material be marked in

reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or

authors of the material; or

 e) Declining to grant rights under trademark law for use of some

trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified versions of

it) with contractual assumptions of liability to the recipient, for

any liability that these contractual assumptions directly impose on

those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

 This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Credits

Willem Wybo

Jakob Jordan

Benjamin Ellenberger

Benjamin Torben-Nielsen

Citing

To cite NEAT please use the following publication:

Wybo, Willem A.M. et al. (2021) Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses, eLife, 10:e60936, pp. 1–26, doi 10.7554/eLife.60936 [https://doi.org/10.7554/eLife.60936]

PDF [https://elifesciences.org/articles/60936]

Bibliography

	Cannon1998

	Cannon et al. (1998) An online archive of reconstructed hippocampal neurons, J. Neurosci. methods.

	Carnevale2004

	Carnevale, Nicholas T. and Hines, Michael L. (2004) The NEURON book

	Koch1985

	Koch, C. and Poggio, T. (1985) A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry, Journal of neuroscience methods, 12(4), pp. 303–315.

	Major1993

	Major et al. (1993) Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt, Biophysical journal, 65(1), pp. 423–49.

	Martelli03

	
	Martelli (2003) Python in a Nutshell, O’Reilly Media Inc.

	Wybo2019

	Wybo, Willem A.M. et al. (2019) Electrical Compartmentalization in Neurons, Cell Reports, 26(7), pp. 1759–1773

	Wybo2021

	Wybo, Willem A.M. et al. (2021) Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses, eLife, 10:e60936, pp. 1–26

	Gewaltig2007

	Gewaltig, Marc-Oliver and Diesmann, Markus. (2007) NEST (NEural Simulation Tool), Scholarpedia, 2(4), pp. 1430

Examples

These are examples of how to obtain simplified compartmental models with NEAT.
To run these examples, first compile the required ionchannels. From the
examples/ directory, run:

compilechannels models/channels/

[image: Bac firing]
Bac firing

[image: Sequence discrimination]
Sequence discrimination

[image: Basal AP Backprop]
Basal AP Backprop

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Bac firing

[image: ../../../figures/bac_firing.png]
import numpy as np
import warnings

from neat import MorphLoc, CompartmentFitter
from models.L5_pyramid import getL5Pyramid

from plotutil import *

import pickle

SIM_FLAG = 1
try:
 import neuron
 from neat import NeuronSimTree, NeuronCompartmentTree, createReducedNeuronModel
except ImportError:
 warnings.warn('NEURON not available, plotting stored image', UserWarning)
 SIM_FLAG = 0

Parameters
sites for simplification
D2S_CASPIKE = np.array([685., 785., 885., 985.])
D2S_APIC = np.array([85., 185., 285., 385., 485., 585.])
CA_LOC = (224, 0.86)

morphology color map
vals = np.ones((2, 4))
vals[0,:] = mcolors.to_rgba('DarkGrey')
vals[1,:] = mcolors.to_rgba('lime')
CMAP_MORPH = mcolors.ListedColormap(vals)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/neatdend/checkouts/latest/examples/bac_firing.py:23: UserWarning: NEURON not available, plotting stored image
 warnings.warn('NEURON not available, plotting stored image', UserWarning)

def getCTree(cfit, locs, f_name, recompute_ctree=False, recompute_biophys=False):
 """
 Uses `neat.CompartmentFitter` to derive a `neat.CompartmentTree` for the
 given `locs`. The simplified tree is stored under `f_name`. If the
 simplified tree exists, it is loaded by default in memory (unless
 `recompute_ctree` is ``True``). The impedances for efficient impedance
 matrix evaluation are also stored, and are by default reloaded if they exist
 (unless `recompute_biophys` is ``True``).
 """
 try:
 if recompute_ctree:
 raise IOError
 print('\n>>>> loading file %s'%f_name)
 file = open(f_name + '.p', 'rb')
 ctree = pickle.load(file)
 clocs = pickle.load(file)
 except (IOError, EOFError) as err:
 print('\n>>>> (re-)deriving model %s'%f_name)
 ctree = cfit.fitModel(locs, alpha_inds=[0], parallel=True,
 use_all_channels_for_passive=False,
 recompute=recompute_biophys)
 clocs = ctree.getEquivalentLocs()
 print('>>>> writing file %s'%f_name)
 file = open(f_name + '.p', 'wb')
 pickle.dump(ctree, file)
 pickle.dump(clocs, file)
 file.close()
 return ctree, clocs

def runCaCoinc(sim_tree, locs,
 ca_loc_ind, soma_ind,
 stim_type='psp',
 dt=0.1, t_max=300., t_calibrate=100.,
 psp_params=dict(t_rise=.5, t_decay=5., i_amp=.5, t_stim=50.),
 i_in_params=dict(i_amp=1.9, t_onset=45., t_dur=5.),
 rec_kwargs=dict(record_from_syns=False, record_from_iclamps=False,
 record_from_vclamps=False, record_from_channels=False,
 record_v_deriv=False),
 pprint=True):
 """
 Runs the BAC-firing protocol to elicit an AP burst in response to coincident
 somatic and dendritic input
 """
 # initialize the NEURON model
 sim_tree.initModel(dt=dt, t_calibrate=t_calibrate, factor_lambda=10.)
 sim_tree.storeLocs(locs, 'rec locs')
 if stim_type == 'psp' or stim_type == 'coinc':
 sim_tree.addDoubleExpCurrent(locs[ca_loc_ind], psp_params['t_rise'], psp_params['t_decay'])
 sim_tree.setSpikeTrain(0, psp_params['i_amp'], [psp_params['t_stim']])
 if stim_type == 'psp':
 sim_tree.addIClamp(locs[soma_ind], 0., i_in_params['t_onset'], i_in_params['t_dur'])
 if stim_type == 'current':
 sim_tree.addDoubleExpCurrent(locs[ca_loc_ind], psp_params['t_rise'], psp_params['t_decay'])
 sim_tree.setSpikeTrain(0, 0., [psp_params['t_stim']])
 if stim_type == 'current' or stim_type == 'coinc':
 sim_tree.addIClamp(locs[soma_ind], i_in_params['i_amp'], i_in_params['t_onset'], i_in_params['t_dur'])
 # simulate the NEURON model
 res = sim_tree.run(t_max, pprint=pprint, **rec_kwargs)
 sim_tree.deleteModel()
 return res

def runCalciumCoinc(recompute_ctree=False, recompute_biophys=False, axdict=None, pshow=True):
 global D2S_CASPIKE, D2S_APIC
 global CA_LOC

 lss_ = ['-', '-.', '--']
 css_ = [colours[3], colours[0], colours[1]]
 lws_ = [.8, 1.2, 1.6]

 # create the full model
 phys_tree = getL5Pyramid()
 sim_tree = phys_tree.__copy__(new_tree=NeuronSimTree())
 # compartmentfitter object
 cfit = CompartmentFitter(phys_tree, name='bac_firing', path='data/')

 # single branch initiation zone
 branch = sim_tree.pathToRoot(sim_tree[236])[::-1]
 locs_sb = sim_tree.distributeLocsOnNodes(D2S_CASPIKE, node_arg=branch, name='single branch')
 # abpical trunk locations
 apic = sim_tree.pathToRoot(sim_tree[221])[::-1]
 locs_apic = sim_tree.distributeLocsOnNodes(D2S_APIC, node_arg=apic, name='apic connection')

 # store set of locations
 fit_locs = [(1, .5)] + locs_apic + locs_sb
 sim_tree.storeLocs(fit_locs, name='ca coinc')
 # PSP input location index
 ca_ind = sim_tree.getNearestLocinds([CA_LOC], name='ca coinc')[0]

 # obtain the simplified tree
 ctree, clocs = getCTree(cfit, fit_locs, 'data/ctree_bac_firing',
 recompute_biophys=recompute_biophys, recompute_ctree=recompute_ctree)

 # print(ctree)
 print('--- ctree nodes currents')
 print('\n'.join([str(n.currents) for n in ctree]))

 reslist, creslist_sb, creslist_sb_ = [], [], []
 locindslist_sb, locindslist_apic_sb = [], []

 if axdict is None:
 pl.figure('inp')
 axes_input = [pl.subplot(131), pl.subplot(132), pl.subplot(133)]
 pl.figure('V trace')
 axes_trace = [pl.subplot(131), pl.subplot(132), pl.subplot(133)]
 pl.figure('morph')
 axes_morph = [pl.subplot(121), pl.subplot(122)]
 else:
 axes_input = axdict['inp']
 axes_trace = axdict['trace']
 axes_morph = axdict['morph']
 pshow = False

 for jj, stim in enumerate(['current', 'psp', 'coinc']):
 print('--- sim full ---')
 rec_locs = sim_tree.getLocs('ca coinc')
 # runn the simulation
 res = runCaCoinc(sim_tree, rec_locs, ca_ind, 0, stim_type=stim,
 rec_kwargs=dict(record_from_syns=True, record_from_iclamps=True))

 print('---- sim reduced ----')
 rec_locs = clocs
 # run the simulation of the reduced tree
 csim_tree = createReducedNeuronModel(ctree)
 cres = runCaCoinc(csim_tree, rec_locs, ca_ind, 0, stim_type=stim, rec_kwargs=dict(record_from_syns=True, record_from_iclamps=True))

 id_offset = 1.
 vd_offset = 7.2
 vlim = (-80.,20.)
 ilim = (-.1,2.2)

 # input current
 ax = axes_input[jj]
 ax.plot(res['t'], -res['i_clamp'][0], c='r', lw=lwidth)
 ax.plot(res['t'], res['i_syn'][0]+id_offset, c='b', lw=lwidth)

 ax.set_yticks([0., id_offset])
 if jj == 1 or jj == 2:
 drawScaleBars(ax, ylabel=' nA', b_offset=0)
 else:
 drawScaleBars(ax)
 if jj == 2:
 ax.set_yticklabels([r'Soma', r'Dend'])

 ax.set_ylim(ilim)

 # somatic trace
 ax = axes_trace[jj]
 ax.set_xticks([0.,50.])
 ax.plot(res['t'], res['v_m'][0], c='DarkGrey', lw=lwidth)
 ax.plot(cres['t'], cres['v_m'][0], c=cll[0], lw=1.6*lwidth, ls='--')

 # dendritic trace
 ax.plot(res['t'], res['v_m'][ca_ind]+vd_offset, c='DarkGrey', lw=lwidth)
 ax.plot(cres['t'], cres['v_m'][ca_ind]+vd_offset, c=cll[1], lw=1.6*lwidth, ls='--')

 ax.set_yticks([cres['v_m'][0][0], cres['v_m'][ca_ind][0]+vd_offset])
 if jj == 1 or jj == 2:
 drawScaleBars(ax, xlabel=' ms', ylabel=' mV', b_offset=15)
 # drawScaleBars(ax, xlabel=' ms', b_offset=25)
 else:
 drawScaleBars(ax)
 if jj == 2:
 ax.set_yticklabels([r'Soma', r'Dend'])
 ax.set_ylim(vlim)

 print('iv')

 plocs = sim_tree.getLocs('ca coinc')
 markers = [{'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize/1.1}] + \
 [{'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize/1.1} for _ in locs_apic + locs_sb]
 markers[ca_ind]['marker'] = 'v'
 plotargs = {'lw': lwidth/1.3, 'c': 'DarkGrey'}
 sim_tree.plot2DMorphology(axes_morph[0], use_radius=False, plotargs=plotargs,
 marklocs=plocs, locargs=markers, lims_margin=0.01)
 # compartment tree dendrogram
 labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}}
 labelargs.update({ii: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2} for ii in range(1,len(plocs))})
 ctree.plotDendrogram(axes_morph[1], plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs)

 pl.show()

if __name__ == '__main__':
 if SIM_FLAG:
 runCalciumCoinc()
 else:
 plotStoredImg('../docs/figures/bac_firing.png')

[image: bac firing]
Total running time of the script: (0 minutes 0.427 seconds)

Download Python source code: bac_firing.py

Download Jupyter notebook: bac_firing.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Sequence discrimination

[image: ../../../figures/sequence_discrimination.png]
import sys
import numpy as np
import warnings

from neat import MorphLoc, CompartmentFitter
from models.L23_pyramid import getL23PyramidPas

from plotutil import *

SIM_FLAG = 1
try:
 import neuron
 from neuron import h
 from neat import NeuronSimTree, NeuronCompartmentTree, createReducedNeuronModel
except ImportError:
 warnings.warn('NEURON not available, plotting stored image', UserWarning)
 SIM_FLAG = 0

Parameters
synapse location parameters
SYN_NODE_IND = 112 # node index corresponding to dend[13] in Branco's (2010) model
SYN_XCOMP = [0., 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.]
AMPA synapse parameters
G_MAX_AMPA = 0.0005 # 500 pS
TAU_AMPA = 2. # ms
NMDA synapse parameters
G_MAX_NMDA = 8000. # 8000 pS (Popen is 0.2 so effective gmax = 1600 pS, use 5000 pS for active model)
E_REV_NMDA = 5. # mV
C_MG = 1. # mM
DUR_REL = 0.5 # ms
AMP_REL = 2. # mM

Out:

/home/docs/checkouts/readthedocs.org/user_builds/neatdend/checkouts/latest/examples/sequence_discrimination.py:23: UserWarning: NEURON not available, plotting stored image
 warnings.warn('NEURON not available, plotting stored image', UserWarning)

def plotSim(delta_ts=[0.,1.,2.,3.,4.,5.,6.,7.,8.], recompute=False):
 class BrancoSimTree(NeuronSimTree):
 '''
 Inherits from :class:`NeuronSimTree` to implement Branco model
 '''
 def __init__(self):
 super().__init__()
 phys_tree = getL23PyramidPas()
 phys_tree.__copy__(new_tree=self)

 def setSynLocs(self):
 global SYN_NODE_IND, SYN_XCOMP
 # set computational tree
 self.setCompTree()
 self.treetype = 'computational'
 # define the locations
 locs = [MorphLoc((SYN_NODE_IND, x), self, set_as_comploc=True) for x in SYN_XCOMP]
 self.storeLocs(locs, name='syn locs')
 self.storeLocs([(1., 0.5)], name='soma loc')
 # set treetype back
 self.treetype = 'original'

 def deleteModel(self):
 super(BrancoSimTree, self).deleteModel()
 self.pres = []
 self.nmdas = []

 def addAMPASynapse(self, loc, g_max, tau):
 loc = MorphLoc(loc, self)
 # create the synapse
 syn = h.AlphaSynapse(self.sections[loc['node']](loc['x']))
 syn.tau = tau
 syn.gmax = g_max
 # store the synapse
 self.syns.append(syn)

 def addNMDASynapse(self, loc, g_max, e_rev, c_mg, dur_rel, amp_rel):
 loc = MorphLoc(loc, self)
 # create the synapse
 syn = h.NMDA_Mg_T(self.sections[loc['node']](loc['x']))
 syn.gmax = g_max
 syn.Erev = e_rev
 syn.mg = c_mg
 # create the presynaptic segment for release
 pre = h.Section(name='pre %d'%len(self.pres))
 pre.insert('release_BMK')
 pre(0.5).release_BMK.dur = dur_rel
 pre(0.5).release_BMK.amp = amp_rel
 # connect
 h.setpointer(pre(0.5).release_BMK._ref_T, 'C', syn)
 # store the synapse
 self.nmdas.append(syn)
 self.pres.append(pre)

 # setpointer cNMDA[n].C, PRE[n].T_rel(0.5)
 # setpointer im_xtra(x), i_membrane(x)
 # h.setpointer(dend(seg.x)._ref_i_membrane, 'im', dend(seg.x).xtra)

 def setSpikeTime(self, syn_index, spike_time):
 spk_tm = spike_time + self.t_calibrate
 # add spike for AMPA synapse
 self.syns[syn_index].onset = spk_tm
 # add spike for NMDA synapse
 self.pres[syn_index](0.5).release_BMK.delay = spk_tm

 def addAllSynapses(self):
 global G_MAX_AMPA, TAU_AMPA, G_MAX_NMDA, E_REV_NMDA, C_MG, DUR_REL, AMP_REL
 for loc in self.getLocs('syn locs'):
 # ampa synapse
 self.addAMPASynapse(loc, G_MAX_AMPA, TAU_AMPA)
 # nmda synapse
 self.addNMDASynapse(loc, G_MAX_NMDA, E_REV_NMDA, C_MG, DUR_REL, AMP_REL)

 def setSequence(self, delta_t, centri='fugal', t0=10., tadd=100.):
 n_loc = len(self.getLocs('syn locs'))
 if centri == 'fugal':
 for ll in range(n_loc):
 self.setSpikeTime(ll, t0 + ll * delta_t)
 elif centri == 'petal':
 for tt, ll in enumerate(range(n_loc)[::-1]):
 self.setSpikeTime(ll, t0 + tt * delta_t)
 else:
 raise IOError('Only centrifugal or centripetal sequences are allowed, ' + \
 'use \'fugal\' resp. \'petal\' as second arg.')
 return n_loc * delta_t + t0 + tadd

 def reduceModel(self, pprint=False):
 global SYN_NODE_IND, SYN_XCOMP
 locs = [MorphLoc((1, .5), self, set_as_comploc=True)] + \
 [MorphLoc((SYN_NODE_IND, x), self, set_as_comploc=True) for x in SYN_XCOMP]

 # creat the reduced compartment tree
 ctree = self.createCompartmentTree(locs)
 # create trees to derive fitting matrices
 sov_tree, greens_tree = self.getZTrees()

 # compute the steady state impedance matrix
 z_mat = greens_tree.calcImpedanceMatrix(locs)[0].real
 # fit the conductances to steady state impedance matrix
 ctree.computeGMC(z_mat, channel_names=['L'])

 if pprint:
 np.set_printoptions(precision=1, linewidth=200)
 print(('Zmat original (MOhm) =\n' + str(z_mat)))
 print(('Zmat fitted (MOhm) =\n' + str(ctree.calcImpedanceMatrix())))

 # get SOV constants
 alphas, phimat = sov_tree.getImportantModes(locarg=locs,
 sort_type='importance', eps=1e-12)
 # n_mode = len(locs)
 # alphas, phimat = alphas[:n_mode], phimat[:n_mode, :]
 importance = sov_tree.getModeImportance(sov_data=(alphas, phimat), importance_type='full')
 # fit the capacitances from SOV time-scales
 # ctree.computeC(-alphas*1e3, phimat, weight=importance)
 ctree.computeC(-alphas[:1]*1e3, phimat[:1,:], importance=importance[:1])

 if pprint:
 print(('Taus original (ms) =\n' + str(np.abs(1./alphas))))
 lambdas, _, _ = ctree.calcEigenvalues()
 print(('Taus fitted (ms) =\n' + str(np.abs(1./lambdas))))

 return ctree

 def runSim(self, delta_t=12.):
 try:
 el = self[0].currents['L'][1]
 except AttributeError:
 el = self[1].currents['L'][1]
 # el=-75.

 self.initModel(dt=0.025, t_calibrate=0., v_init=el, factor_lambda=10.)
 # add the synapses
 self.addAllSynapses()
 t_max = self.setSequence(delta_t, centri='petal')
 # set recording locs
 self.storeLocs(self.getLocs('soma loc') + self.getLocs('syn locs'), name='rec locs')
 # run the simulation
 res_centripetal = self.run(t_max, pprint=True)
 # delete the model
 self.deleteModel()

 self.initModel(dt=0.025, t_calibrate=0., v_init=el, factor_lambda=10.)
 # add the synapses
 self.addAllSynapses()
 t_max = self.setSequence(delta_t, centri='fugal')
 # set recording locs
 self.storeLocs(self.getLocs('soma loc') + self.getLocs('syn locs'), name='rec locs')
 # run the simulation
 res_centrifugal = self.run(t_max, pprint=True)
 # delete the model
 self.deleteModel()

 return res_centripetal, res_centrifugal

 class BrancoReducedTree(NeuronCompartmentTree, BrancoSimTree):
 def __init__(self):
 # call the initializer of :class:`NeuronSimTree`, follows after
 # :class:`BrancoSimTree` in MRO
 super(BrancoSimTree, self).__init__(file_n=None, types=[1,3,4])

 def setSynLocs(self, equivalent_locs):
 self.storeLocs(equivalent_locs[1:], name='syn locs')
 self.storeLocs(equivalent_locs[:1], name='soma loc')

 global SYN_NODE_IND, SYN_XCOMP

 # initialize the full model
 simtree = BrancoSimTree()
 simtree.setSynLocs()
 simtree.setCompTree()

 # derive the reduced model retaining only soma and synapse locations
 fit_locs = simtree.getLocs('soma loc') + simtree.getLocs('syn locs')
 c_fit = CompartmentFitter(simtree, name='sequence_discrimination', path='data/')
 ctree = c_fit.fitModel(fit_locs, recompute=recompute)
 clocs = ctree.getEquivalentLocs()

 # create the reduced model for NEURON simulation
 csimtree_ = createReducedNeuronModel(ctree)
 csimtree = csimtree_.__copy__(new_tree=BrancoReducedTree())
 csimtree.setSynLocs(clocs)

 pl.figure('Branco', figsize=(5,5))
 gs = GridSpec(2,2)
 ax0 = pl.subplot(gs[0,0])
 ax_ = pl.subplot(gs[0,1])
 ax1 = myAx(pl.subplot(gs[1,:]))

 # plot the full morphology
 locargs = [dict(marker='s', mec='k', mfc=cfl[0], ms=markersize)]
 locargs.extend([dict(marker='s', mec='k', mfc=cfl[1], ms=markersize) for ii in range(1,len(fit_locs))])
 pnodes = [n for n in simtree if n.swc_type != 2]
 plotargs = {'lw': lwidth/1.3, 'c': 'DarkGrey'}
 simtree.plot2DMorphology(ax0, use_radius=False,node_arg=pnodes,
 plotargs=plotargs, marklocs=fit_locs, locargs=locargs, lims_margin=.01,
 textargs={'fontsize': ticksize}, labelargs={'fontsize': ticksize})

 # plot a schematic of the reduced model
 labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}}
 labelargs.update({ii: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2} for ii in range(1,len(fit_locs))})
 ctree.plotDendrogram(ax_, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs)

 xlim, ylim = np.array(ax_.get_xlim()), np.array(ax_.get_ylim())
 pp = np.array([np.mean(xlim), np.mean(ylim)])
 dp = np.array([2.*np.abs(xlim[1]-xlim[0])/3.,0.])
 ax_.annotate('Centrifugal', #xycoords='axes points',
 xy=pp, xytext=pp+dp,
 size=ticksize, rotation=90, ha='center', va='center')
 ax_.annotate('Centripetal', #xycoords='axes points',
 xy=pp, xytext=pp-dp,
 size=ticksize, rotation=90, ha='center', va='center')

 # plot voltage traces
 legend_handles = []
 for ii, delta_t in enumerate(delta_ts):
 res_cp, res_cf = simtree.runSim(delta_t=delta_t)
 ax1.plot(res_cp['t'], res_cp['v_m'][0], c='DarkGrey', lw=lwidth)
 ax1.plot(res_cf['t'], res_cf['v_m'][0], c='DarkGrey', lw=lwidth)

 cres_cp, cres_cf = csimtree.runSim(delta_t=delta_t)
 line = ax1.plot(cres_cp['t'], cres_cp['v_m'][0], c=colours[ii%len(colours)],
 ls='--', lw=1.6*lwidth, label=r'$\Delta t = ' + '%.1f$ ms'%delta_t)
 ax1.plot(cres_cf['t'], cres_cf['v_m'][0], c=colours[ii%len(colours)], ls='-.', lw=1.6*lwidth)

 legend_handles.append(line[0])

 legend_handles.append(mlines.Line2D([0,0],[0,0], ls='--', lw=1.6*lwidth, c='DarkGrey', label=r'centripetal'))
 legend_handles.append(mlines.Line2D([0,0],[0,0], ls='-.', lw=1.6*lwidth, c='DarkGrey', label=r'centrifugal'))

 drawScaleBars(ax1, r' ms', r' mV', b_offset=20, h_offset=15, v_offset=15)
 myLegend(ax1, loc='upper left', bbox_to_anchor=(.7,1.3), handles=legend_handles,
 fontsize=ticksize, handlelength=2.7)

 pl.tight_layout()
 pl.show()

if __name__ == '__main__':
 if SIM_FLAG:
 plotSim(delta_ts=[0.,4.,8.])
 else:
 plotStoredImg('../docs/figures/sequence_discrimination.png')

[image: sequence discrimination]
Total running time of the script: (0 minutes 0.206 seconds)

Download Python source code: sequence_discrimination.py

Download Jupyter notebook: sequence_discrimination.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Basal AP Backprop

[image: ../../../figures/ap_backpropagation.png]
import numpy as np
import warnings

from neat import MorphLoc, CompartmentFitter
from models.L23_pyramid import getL23PyramidNaK

from plotutil import *

import pickle

SIM_FLAG = 1
try:
 import neuron
 from neat import NeuronSimTree, NeuronCompartmentTree, createReducedNeuronModel
except ImportError:
 warnings.warn('NEURON not available, plotting stored image', UserWarning)
 SIM_FLAG = 0

Parameters
soma nodes branco
SLOCS = [(1, .5)]
loc params
D2S_BASAL = np.array([50., 100., 150.])
soma stimulus params
STIM_PARAMS = {'amp': 3., # nA
 't_onset': 5., # ms
 't_dur': 1. # ms
 }
simulation parameters
DT = 0.025
T_MAX = 300.
TC = 200.

morphology color map
vals = np.ones((2, 4))
vals[0,:] = mcolors.to_rgba('DarkGrey')
vals[1,:] = mcolors.to_rgba('lime')
CMAP_MORPH = mcolors.ListedColormap(vals)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/neatdend/checkouts/latest/examples/basal_ap_backprop.py:23: UserWarning: NEURON not available, plotting stored image
 warnings.warn('NEURON not available, plotting stored image', UserWarning)

def getCTree(cfit, locs, f_name, recompute_ctree=False, recompute_biophys=False):
 """
 Uses `neat.CompartmentFitter` to derive a `neat.CompartmentTree` for the
 given `locs`. The simplified tree is stored under `f_name`. If the
 simplified tree exists, it is loaded by default in memory (unless
 `recompute_ctree` is ``True``). The impedances for efficient impedance
 matrix evaluation are also stored, and are by default reloaded if they exist
 (unless `recompute_biophys` is ``True``).
 """
 try:
 if recompute_ctree:
 raise IOError
 print('\n>>>> loading file %s'%f_name)
 file = open(f_name + '.p', 'rb')
 ctree = pickle.load(file)
 clocs = pickle.load(file)
 except (IOError, EOFError) as err:
 print('\n>>>> (re-)deriving model %s'%f_name)
 ctree = cfit.fitModel(locs, alpha_inds=[0], parallel=True,
 use_all_channels_for_passive=False,
 recompute=recompute_biophys)
 clocs = ctree.getEquivalentLocs()
 print('>>>> writing file %s'%f_name)
 file = open(f_name + '.p', 'wb')
 pickle.dump(ctree, file)
 pickle.dump(clocs, file)
 file.close()
 return ctree, clocs

def calcAmpDelayWidth(res):
 """
 Compute a number of AP amplitude, delay compared to start of simulation,
 delay of backpropagating AP compared to soma AP, and halfwidth
 """
 dt = res['t'][1] - res['t'][0]
 # amplitude of peak
 res['amp'] = np.max(res['v_m'], axis=1) - res['v_m'][:,0]
 # delay of peak compared to soma
 res['delay'] = dt * (np.argmax(res['v_m'], axis=1) - np.argmax(res['v_m'][0]))
 # absolute delay of peak
 res['dop'] = dt * np.argmax(res['v_m'], axis=1)
 # width of waveform at half amplitude
 v_half = res['amp'] / 2. + res['v_m'][:,0]
 res['width'] = dt*np.sum(res['v_m'] > v_half[:,None], axis=1)

def runSim(simtree, locs, soma_loc, stim_params={'amp':.5, 't_onset':5., 't_dur':1.}):
 """
 Runs simulation to inject somatic current in order to elicit AP
 """
 global DT, T_MAX, TC
 global T_DUR, G_SYN, N_INP

 simtree.initModel(dt=DT, t_calibrate=TC, factor_lambda=1.)
 simtree.addIClamp(soma_loc, stim_params['amp'], stim_params['t_onset'], stim_params['t_dur'])
 simtree.storeLocs([soma_loc] + locs, 'rec locs')

 res = simtree.run(40., record_from_iclamps=True)
 simtree.deleteModel()

 return res

def basalAPBackProp(recompute_ctree=False, recompute_biophys=False, axes=None, pshow=True):
 global STIM_PARAMS, D2S_BASAL, SLOCS
 global CMAP_MORPH

 rc, rb = recompute_ctree, recompute_biophys

 if axes is None:
 pl.figure(figsize=(7,5))
 ax1, ax2, ax4, ax5 = pl.subplot(221), pl.subplot(223), pl.subplot(222), pl.subplot(224)
 divider = make_axes_locatable(ax1)
 ax3 = divider.append_axes("top", "30%", pad="10%")
 ax4, ax5 = myAx(ax4), myAx(ax5)
 pl.figure(figsize=(5,5))
 gs = GridSpec(2,2)
 ax_morph, ax_red1, ax_red2 = pl.subplot(gs[0,:]), pl.subplot(gs[1,0]), pl.subplot(gs[1,1])
 else:
 ax1, ax2, ax3 = axes['trace']
 ax4, ax5 = axes['amp-delay']
 ax_morph, ax_red1, ax_red2 = axes['morph']
 pshow = False

 # create the full model
 phys_tree = getL23PyramidNaK()
 sim_tree = phys_tree.__copy__(new_tree=NeuronSimTree())

 # distribute locations to measure backAPs on branches
 leafs_basal = [node for node in sim_tree.leafs if node.swc_type == 3]
 branches = [sim_tree.pathToRoot(leaf)[::-1] for leaf in leafs_basal]
 locslist = [sim_tree.distributeLocsOnNodes(D2S_BASAL, node_arg=branch) for branch in branches]
 branchlist = [b for ii, b in enumerate(branches) if len(locslist[ii]) == 3]
 locs = [locs for locs in locslist if len(locs) == 3][1]
 # do back prop sims
 amp_diffs_3loc, delay_diffs_3loc = np.zeros(3), np.zeros(3)
 amp_diffs_1loc, delay_diffs_1loc = np.zeros(3), np.zeros(3)
 amp_diffs_biop, delay_diffs_biop = np.zeros(3), np.zeros(3)

 # compartmentfitter object
 cfit = CompartmentFitter(phys_tree, name='basal_bAP', path='data/')

 # create reduced tree
 ctree, clocs = getCTree(cfit, [SLOCS[0]] + locs, 'data/ctree_basal_bAP_3loc',
 recompute_ctree=rc, recompute_biophys=rb)
 csimtree = createReducedNeuronModel(ctree)
 print(ctree)

 # run the simulation of he full tree
 res = runSim(sim_tree, locs, SLOCS[0], stim_params=STIM_PARAMS)
 calcAmpDelayWidth(res)

 amp_diffs_biop[:] = res['amp'][1:]
 delay_diffs_biop[:] = res['delay'][1:]

 # run the simulation of the reduced tree
 cres = runSim(csimtree, clocs[1:], clocs[0], stim_params=STIM_PARAMS)
 calcAmpDelayWidth(cres)

 amp_diffs_3loc[:] = cres['amp'][1:]
 delay_diffs_3loc[:] = cres['delay'][1:]

 # reduced models with one single dendritic site
 creslist = []
 for jj, loc in enumerate(locs):
 # create reduced tree with all 1 single dendritic site locs
 ctree, clocs = getCTree(cfit, [SLOCS[0]] + [loc], 'data/ctree_basal_bAP_1loc%d'%jj,
 recompute_ctree=rc, recompute_biophys=False)
 csimtree = createReducedNeuronModel(ctree)
 print(ctree)

 # run the simulation of the reduced tree
 cres_ss = runSim(csimtree, [clocs[1]], clocs[0], stim_params=STIM_PARAMS)
 calcAmpDelayWidth(cres_ss)
 creslist.append(cres_ss)

 amp_diffs_1loc[jj] = cres_ss['amp'][1]
 delay_diffs_1loc[jj] = cres_ss['delay'][1]

 ylim = (-90., 60.)
 x_range = np.array([-3.,14])
 xlim = (0., 12.)

 tp_full = res['t'][np.argmax(res['v_m'][0])]
 tp_3comp = cres['t'][np.argmax(cres['v_m'][0])]
 tp_1comp = creslist[2]['t'][np.argmax(creslist[2]['v_m'][0])]

 tlim_full = tp_full + x_range
 tlim_3comp = tp_3comp + x_range
 tlim_1comp = tp_1comp + x_range

 i0_full, i1_full = np.round(tlim_full / DT).astype(int)
 i0_3comp, i1_3comp = np.round(tlim_3comp / DT).astype(int)
 i0_1comp, i1_1comp = np.round(tlim_1comp / DT).astype(int)

 ax1.set_ylabel(r'soma')
 ax1.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][0][i0_full:i1_full],
 lw=lwidth, c='DarkGrey', label=r'full')
 ax1.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][0][i0_3comp:i1_3comp],
 ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp')
 ax1.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][0][i0_1comp:i1_1comp],
 ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp')

 ax1.set_ylim(ylim)
 # ax1.set_xlim(xlim)
 drawScaleBars(ax1, b_offset=15)

 myLegend(ax1, add_frame=False, loc='center left', bbox_to_anchor=[0.35, 0.55], fontsize=ticksize,
 labelspacing=.8, handlelength=2., handletextpad=.2)

 ax2.set_ylabel(r'dend' + '\n($d_{soma} = 150$ μm)')
 ax2.plot(res['t'][i0_full:i1_full] - tlim_full[0], res['v_m'][3][i0_full:i1_full],
 lw=lwidth, c='DarkGrey', label=r'full')
 ax2.plot(cres['t'][i0_3comp:i1_3comp] - tlim_3comp[0], cres['v_m'][3][i0_3comp:i1_3comp],
 ls='--', lw=1.6*lwidth, c=colours[0], label=r'3 comp')
 ax2.plot(creslist[2]['t'][i0_1comp:i1_1comp] - tlim_1comp[0], creslist[2]['v_m'][1][i0_1comp:i1_1comp],
 ls='-.', lw=1.6*lwidth, c=colours[1], label=r'1 comp')

 imax = np.argmax(res['v_m'][3])
 xp = res['t'][imax]

 ax2.annotate(r'v_{amp}',
 xy=(xlim[0], np.mean(ylim)), xytext=(xlim[0], np.mean(ylim)),
 fontsize=ticksize, ha='center', va='center', rotation=90.)
 ax2.annotate(r't_{delay}',
 xy=(xp, ylim[1]), xytext=(xp, ylim[1]),
 fontsize=ticksize, ha='center', va='center', rotation=0.)

 ax2.set_ylim(ylim)
 ax2.set_xlim(xlim)

 drawScaleBars(ax2, xlabel=' ms', ylabel=' mV', b_offset=15)

 # myLegend(ax2, add_frame=False, ncol=2, fontsize=ticksize,
 # loc='upper center', bbox_to_anchor=[.5, -.1],
 # labelspacing=.6, handlelength=2., handletextpad=.2, columnspacing=.5)

 ax3.plot(res['t'][i0_full:i1_full] - tlim_full[0], -res['i_clamp'][0][i0_full:i1_full],
 lw=lwidth, c='r')
 ax3.set_yticks([0.,3.])
 drawScaleBars(ax3, ylabel=' nA', b_offset=0)
 # ax3.set_xlim(xlim)

 # color the branches
 cnodes = [b for branch in branches for b in branch]
 if cnodes is None:
 plotargs = {'lw': lwidth/1.3, 'c': 'DarkGrey'}
 cs = {node.index: 0 for node in sim_tree}
 else:
 plotargs = {'lw': lwidth/1.3}
 cinds = [n.index for n in cnodes]
 cs = {node.index: 1 if node.index in cinds else 0 for node in sim_tree}
 # mark example locations
 plocs = [SLOCS[0]] + locs
 markers = [{'marker': 's', 'c': cfl[0], 'mec': 'k', 'ms': markersize}] + \
 [{'marker': 's', 'c': cfl[1], 'mec': 'k', 'ms': markersize} for _ in plocs[1:]]
 # plot morphology
 sim_tree.plot2DMorphology(ax_morph, use_radius=False, plotargs=plotargs,
 cs=cs, cmap=CMAP_MORPH,
 marklocs=plocs, locargs=markers, lims_margin=0.01)

 # plot compartment tree schematic
 ctree_3l = cfit.setCTree([SLOCS[0]] + locs)
 ctree_3l = cfit.ctree
 ctree_1l = cfit.setCTree([SLOCS[0]] + locs[0:1])
 ctree_1l = cfit.ctree

 labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2}}
 labelargs.update({ii: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2} for ii in range(1,len(plocs))})
 ctree_3l.plotDendrogram(ax_red1, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs)

 labelargs = {0: {'marker': 's', 'mfc': cfl[0], 'mec': 'k', 'ms': markersize*1.2},
 1: {'marker': 's', 'mfc': cfl[1], 'mec': 'k', 'ms': markersize*1.2}}
 ctree_1l.plotDendrogram(ax_red2, plotargs={'c':'k', 'lw': lwidth}, labelargs=labelargs)

 ax_red1.set_xticks([]); ax_red1.set_yticks([])
 ax_red1.set_xlabel(r'$\Delta x = 50$ μm', fontsize=ticksize,rotation=60)
 ax_red2.set_xticks([]); ax_red2.set_yticks([])
 ax_red2.set_xlabel(r'$\Delta x = 150$ μm', fontsize=ticksize,rotation=60)

 xb = np.arange(3)
 bwidth = 1./4.
 xtls = [r'50', r'100', r'150']

 ax4, ax5 = myAx(ax4), myAx(ax5)

 ax4.bar(xb-bwidth, amp_diffs_biop, width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full')
 ax4.bar(xb, amp_diffs_3loc, width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp')
 ax4.bar((xb+bwidth)[-1:], amp_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp')

 ax4.set_ylabel(r'v_{amp} (mV)')
 ax4.set_xticks(xb)
 ax4.set_xticklabels([])
 ax4.set_ylim(50.,110.)
 ax4.set_yticks([50., 80.])

 myLegend(ax4, add_frame=False, loc='lower center', bbox_to_anchor=[.5, 1.05], fontsize=ticksize,
 labelspacing=.1, handlelength=1., handletextpad=.2, columnspacing=.5)

 ax5.bar(xb-bwidth, delay_diffs_biop, width=bwidth, align='center', color='DarkGrey', edgecolor='k', label=r'full')
 ax5.bar(xb, delay_diffs_3loc, width=bwidth, align='center', color=colours[0], edgecolor='k', label=r'4 comp')
 ax5.bar((xb+bwidth)[-1:], delay_diffs_1loc[-1:], width=bwidth, align='center', color=colours[1], edgecolor='k', label=r'2 comp')

 ax5.set_ylabel(r't_{delay} (ms)')
 ax5.set_xticks(xb)
 ax5.set_xticklabels(xtls)
 ax5.set_xlabel(r'd_{soma} (μm)')
 ax5.set_yticks([0., 0.5])

 if pshow:
 pl.show()

if __name__ == '__main__':
 if SIM_FLAG:
 basalAPBackProp()
 else:
 plotStoredImg('../docs/figures/ap_backpropagation.png')

[image: basal ap backprop]
Total running time of the script: (0 minutes 0.404 seconds)

Download Python source code: basal_ap_backprop.py

Download Jupyter notebook: basal_ap_backprop.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Glossary

	environment
	A structure where information about all documents under the root is
saved, and used for cross-referencing. The environment is pickled
after the parsing stage, so that successive runs only need to read
and parse new and changed documents.

	source directory
	The directory which, including its subdirectories, contains all
source files for one Sphinx project.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 neat.trees	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

_

 	
 	__call__() (FourrierTools method)

 	__copy__() (MorphTree method)

 	(STree method)

 	__getitem__() (MorphTree method)

 	(STree method)

 	__iter__() (MorphTree method)

 	(STree method)

 	
 	__len__() (STree method)

 	__str__() (STree method)

 	_convertLocArgToLocs() (MorphTree method)

 	_convertNodeArgToNodes() (MorphTree method)

 	_evaluateCompCriteria() (MorphTree method)

 	(PhysTree method)

 	_tryName() (MorphTree method)

A

 	
 	addCurrent() (CompartmentTree method)

 	(PhysTree method)

 	addDoubleExpCurrent() (NeuronSimTree method)

 	addDoubleExpNMDASynapse() (NeuronSimTree method)

 	addDoubleExpSynapse() (NeuronSimTree method)

 	addExpSynapse() (NeuronSimTree method)

 	addIClamp() (NeuronSimTree method)

 	addLoc() (MorphTree method)

 	addNMDASynapse() (NeuronSimTree method)

 	
 	addNodeWithParent() (STree method)

 	addNodeWithParentFromIndex() (STree method)

 	addOUClamp() (NeuronSimTree method)

 	addOUconductance() (NeuronSimTree method)

 	addOUReversal() (NeuronSimTree method)

 	addShunt() (NeuronSimTree method)

 	addSinClamp() (NeuronSimTree method)

 	addVClamp() (NeuronSimTree method)

 	asPassiveMembrane() (PhysTree method)

C

 	
 	calcConductanceMatrix() (CompartmentTree method)

 	calcEEq() (NeuronSimTree method)

 	calcEigenvalues() (CompartmentTree method)

 	calcImpedanceMatrix() (CompartmentTree method)

 	(GreensTree method)

 	(NET method)

 	(SOVTree method)

 	calcImpMat() (NET method)

 	calcIZ() (NET method)

 	calcIZMatrix() (NET method)

 	calcSOVEquations() (SOVTree method)

 	calcSystemMatrix() (CompartmentTree method)

 	calcTotalImpedance() (NET method)

 	calcZF() (GreensTree method)

 	checkOrdered() (STree method)

 	checkPassive() (CompartmentFitter method)

 	child_nodes() (MorphNode property)

 	clearLocs() (MorphTree method)

 	colorXAxis() (MorphTree method)

 	CompartmentFitter (class in neat)

 	CompartmentNode (class in neat)

 	
 	CompartmentTree (class in neat)

 	computeC() (CompartmentTree method)

 	computeDerivatives() (IonChannel method)

 	computeDerivativesConc() (IonChannel method)

 	computeFakeGeometry() (CompartmentTree method)

 	computeGChanFromImpedance() (CompartmentTree method)

 	computeGMC() (CompartmentTree method)

 	computeGSingleChanFromImpedance() (CompartmentTree method)

 	computeLinConc() (IonChannel method)

 	computeLinear() (IonChannel method)

 	computeLinearConc() (IonChannel method)

 	computeLinSum() (IonChannel method)

 	computeLinTerms() (SOVTree method)

 	computePOpen() (IonChannel method)

 	computeTauinf() (IonChannel method)

 	computeVarinf() (IonChannel method)

 	constructNET() (SOVTree method)

 	createCompartmentTree() (MorphTree method)

 	createNewTree() (MorphTree method)

 	createReducedNeuronModel() (in module neat.tools.simtools.neuron.neuronmodel)

 	createTreeGF() (CompartmentFitter method)

 	createTreeSOV() (CompartmentFitter method)

D

 	
 	degreeOfNode() (STree method)

 	deleteModel() (NeuronSimTree method)

 	depthOfNode() (STree method)

 	determineSomaType() (MorphTree method)

 	distancesToBifurcation() (MorphTree method)

 	
 	distancesToSoma() (MorphTree method)

 	distributeLocsOnNodes() (MorphTree method)

 	distributeLocsRandom() (MorphTree method)

 	distributeLocsUniform() (MorphTree method)

 	downBifurcationNode() (STree method)

E

 	
 	environment

 	
 	evalChannel() (CompartmentFitter method)

 	extendWithBifurcationLocs() (MorphTree method)

F

 	
 	fitCapacitance() (CompartmentFitter method)

 	fitChannels() (CompartmentFitter method)

 	fitEEq() (CompartmentFitter method)

 	fitEL() (CompartmentTree method)

 	fitLeakCurrent() (PhysTree method)

 	fitModel() (CompartmentFitter method)

 	
 	fitPassive() (CompartmentFitter method)

 	fitPassiveLeak() (CompartmentFitter method)

 	fitSynRescale() (CompartmentFitter method)

 	FourrierTools (class in neat)

 	ft() (FourrierTools method)

 	(Kernel method)

 	ftInv() (FourrierTools method)

G

 	
 	gatherNodes() (STree method)

 	getBifurcationNodes() (STree method)

 	getChannelsInTree() (PhysTree method)

 	getCompartmentalization() (NET method)

 	getEEq() (CompartmentFitter method)

 	(CompartmentTree method)

 	getEquivalentLocs() (CompartmentTree method)

 	getImportantModes() (SOVTree method)

 	getKernels() (CompartmentFitter method)

 	getLeafLocinds() (MorphTree method)

 	getLeafLocNode() (NET method)

 	getLeafs() (MorphTree method)

 	(STree method)

 	getLocInds() (NET method)

 	getLocindsOnNode() (MorphTree method)

 	getLocindsOnNodes() (MorphTree method)

 	getLocindsOnPath() (MorphTree method)

 	
 	getLocs() (MorphTree method)

 	getModeImportance() (SOVTree method)

 	getNearestLocinds() (MorphTree method)

 	getNearestNeighbourLocinds() (MorphTree method)

 	getNearestNeighbours() (STree method)

 	getNodeIndices() (MorphTree method)

 	getNodes() (MorphTree method)

 	(STree method)

 	getNodesInApicalSubtree() (MorphTree method)

 	getNodesInAxonalSubtree() (MorphTree method)

 	getNodesInBasalSubtree() (MorphTree method)

 	getNodesInSubtree() (STree method)

 	getReducedTree() (NET method)

 	getSubTree() (STree method)

 	getXCoords() (MorphTree method)

 	getXValues() (MorphTree method)

 	GreensNode (class in neat)

 	GreensTree (class in neat)

I

 	
 	initModel() (NeuronSimTree method)

 	insertNode() (STree method)

 	
 	IonChannel (class in neat)

 	isLeaf() (STree method)

 	isRoot() (STree method)

K

 	
 	k_bar() (Kernel property)

 	
 	Kernel (class in neat)

L

 	
 	leafs() (MorphTree property)

 	(STree property)

M

 	
 	makeXAxis() (MorphTree method)

 	
 module

 	neat.trees

 	
 	MorphLoc (class in neat)

 	MorphNode (class in neat)

 	MorphTree (class in neat)

N

 	
 	
 neat.trees

 	module

 	NET (class in neat)

 	NETNode (class in neat)

 	
 	NeuronCompartmentTree (class in neat.tools.simtools.neuron.neuronmodel)

 	NeuronSimTree (class in neat.tools.simtools.neuron.neuronmodel)

 	nodes() (MorphTree property)

 	(STree property)

O

 	
 	orderOfNode() (STree method)

P

 	
 	pathBetweenNodes() (STree method)

 	pathBetweenNodesDepthFirst() (STree method)

 	pathLength() (MorphTree method)

 	pathToRoot() (STree method)

 	PhysNode (class in neat)

 	PhysTree (class in neat)

 	
 	plot1D() (MorphTree method)

 	plot2DMorphology() (MorphTree method)

 	plotDendrogram() (CompartmentTree method)

 	(NET method)

 	plotKernels() (CompartmentFitter method)

 	plotMorphologyInteractive() (MorphTree method)

 	plotTrueD2S() (MorphTree method)

R

 	
 	readSWCTreeFromFile() (MorphTree method)

 	removeCompTree() (MorphTree method)

 	removeExpansionPoints() (GreensTree method)

 	removeLocs() (MorphTree method)

 	removeNode() (STree method)

 	removeSingleNode() (STree method)

 	
 	resetFitData() (CompartmentTree method)

 	resetIndices() (STree method)

 	root() (MorphTree property)

 	(STree property)

 	run() (NeuronSimTree method)

 	runFit() (CompartmentTree method)

S

 	
 	setCompTree() (MorphTree method)

 	setCTree() (CompartmentFitter method)

 	setDefaultParams() (IonChannel method)

 	setEEq() (CompartmentFitter method)

 	(CompartmentTree method)

 	(PhysTree method)

 	setExpansionPoint() (GreensNode method)

 	setExpansionPoints() (CompartmentTree method)

 	setImpedance() (GreensTree method)

 	setLeakCurrent() (PhysTree method)

 	setNewLocInds() (NET method)

 	setNodeColors() (MorphTree method)

 	
 	setP3D() (MorphNode method)

 	setPhysiology() (PhysTree method)

 	setSpikeTrain() (NeuronSimTree method)

 	setTreetype() (MorphTree method)

 	sisterLeafs() (STree method)

 	SNode (class in neat)

 	softRemoveNode() (STree method)

 	source directory

 	SOVNode (class in neat)

 	SOVTree (class in neat)

 	storeLocs() (MorphTree method)

 	STree (class in neat)

T

 	
 	t() (Kernel method)

 	
 	treetype() (MorphTree property)

U

 	
 	uniqueLocs() (MorphTree method)

 	
 	upBifurcationNode() (STree method)

Computation times

00:01.037 total execution time for auto_examples files:

	Bac firing (bac_firing.py)

	00:00.427

	0.0 MB

	Basal AP Backprop (basal_ap_backprop.py)

	00:00.404

	0.0 MB

	Sequence discrimination (sequence_discrimination.py)

	00:00.206

	0.0 MB

API changes

We don’t use semantic versioning. The first number indicates that we have
made a major API break (e.g., 1.x to 2.x), which has happened once and probably
won’t happen again for some time. The point releases are new versions and may
contain minor API breakage. Usually, this happens after a one cycle deprecation
period.

Warning

Since we don’t normally make bug-fix only releases, it may not make sense
for you to use ~= as a pip version specifier.

Announcement: NEAT 0.9.0

We’re happy to announce the release of NEAT 0.9.0!

Visit our github page [http://github.com/unibe-cns/NEAT].

This is the initial public release.

Announcement: NEAT 0.9.1

This is the second release of NEAT. It contains extensive improvements to the documentation, a new ion-channel description and improved API functionality to fit reduced compartmental models.
For more information, please visit our website [http://neat.github.io/].

New features

	Sphinx documentation

	parallel evaluation of ion channel fits

	add tutorials to documentation

	add examples to documentation

	compilechannels command for ion channel compilation to NEURON

	new ion channel description

	API functionality to check impedance kernels

Bugfixes

	C-code syntax improvements to avoid error on certain compiler

	Fix multi-cylinder soma loading

Maintenance

	improved test coverage

	improved tracking of dependencies

 _images/_tutorials_models_58_0.png
1000

750

500

250

0

0

500

70

1000

_images/_tutorials_models_60_0.png
12000

10000

00

00

000

2000

— computed
== simulated

_images/_tutorials_models_50_0.png
2

B

_images/_tutorials_models_82_0.png
H

reduced, soma

reduced, dend

-0

a5

—s0

55

60

&5

El

B

_images/_tutorials_morphologies_34_0.png

_images/_tutorials_models_70_0.png
2

%o

150

_images/_tutorials_models_70_1.png
00 m

_images/_tutorials_morphologies_36_0.png

_images/_tutorials_morphologies_38_0.png

_images/_tutorials_morphologies_41_0.png
10

08

06

04

02

00

100

150

20

50

nav.xhtml

 Table of Contents

 		
 Overview of NEAT

 		
 Installation

 		
 Install

 		
 Post-Install

 		
 Tutorial

 		
 Interact with morphologies through neat.MorphTree

 		
 Treetype

 		
 Locations

 		
 Nodearg

 		
 Plotting

 		
 Resampling

 		
 Define morphological models with neat.PhysTree

 		
 Defining physiological parameters

 		
 Inspecting the physiological parameters

 		
 Active dendrites compared to closest passive version

 		
 Computational tree

 		
 Simulate models with neat.NeuronSimTree

 		
 The __copy__ function

 		
 Setting up a simulation

 		
 User defined point-process

 		
 Evaluate impedance matrices with neat.GreensTree

 		
 Computing an impedance kernel

 		
 Computing the impedance matrix

 		
 Simplify a model with neat.CompartmentFitter

 		
 The simplified model neat.CompartmentTree

 		
 Simulate the simplified model with neat.NeuronCompartmentTree

 		
 Compute the separation of variables expansion with neat.SOVTree

 		
 Reference

 		
 Abstract Trees

 		
 Basic tree

 		
 Compartment Tree

 		
 Neural Evaluation Tree

 		
 Simulate reduced compartmental models

 		
 Morphological Trees

 		
 Morphology Tree

 		
 Physiology Tree

 		
 Separation of Variables Tree

 		
 Greens Tree

 		
 Simulate NEURON models

 		
 Other Classes

 		
 Fitting reduced models

 		
 Defining ion channels

 		
 Neural evaluation tree simulator

 		
 Compute Fourrier transforms

 		
 Developer Guide

 		
 Developer overview

 		
 Code of Conduct

 		
 Introduction

 		
 Specific Guidelines

 		
 Diversity Statement

 		
 Reporting Guidelines

 		
 Incident reporting resolution & Code of Conduct enforcement

 		
 Endnotes

 		
 Working with NEAT source code

 		
 Introduction

 		
 Install git

 		
 Following the latest source

 		
 Making a patch

 		
 Git for development

 		
 git resources

 		
 Release Log

 		
 NEAT 0.9.1

 		
 Release notes

 		
 NEAT 0.9.0

 		
 Release notes

 		
 License

 		
 Credits

 		
 Citing

 		
 Bibliography

 		
 Examples

 		
 Glossary

_images/_tutorials_separationofvariables_16_0.png
— %=1000000ms — T=061592ms — ©;=046020ms
— n=lumims — 55353ms —— 15=033093ms
— ne0enms 51001ms —— a=022778ms
T5=074621ms

500.0um

_images/branch_dropdown.png
Source Commits Network Pull Requests (0)

Switch Branches (2) v| SwichTags (0) Branch List

my-fancy-feature
amed axes for data management
placehoider ¢

_images/_tutorials_morphologies_44_0.png

_images/_tutorials_morphologies_47_0.png
T00m

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

_images/sphx_glr_bac_firing_001.png
BAC-firing

>

E

o

50 ms ™

Dend <
Soma 12

Dend
Soma

15mv

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

_images/neat_overview.png
Tree Classes (green: abstract, blue: morphological)

neat.STree

« Base tree class
« Getand iterate over nodes
« Structure (add & remove nodes)

¢v

neat.MorphTree neat.CompartmentTree neat.NETree

« Load morphologies « Define reduced

compartmental models « Dei
« Define & distribute locations: T Defines Neural
" « Fit reduced models to Evaluation Tree

© Plot morphologies impedance matrices & eigenmodes

v

neat.PhysTree

« Define electrical parameters
« Define ion channel distributions

v s

neat.GreensTree neat.SOVTree neat.NeuronSimTree
« Compute separation of
« Compute impedances variables expansion « Simulate models
« Quasi-active channels « Impedance kernels as with NEURON

sums of exponentials

v

neat.NeuronCompartmentTree

« Simulate reduced models
with NEURON

Other classes

neat.CompartmentFitter

« High-level interface for
compartment fitting

« Supports parallelisation
« Supports memoisation

neat.IonChannel

« User define ion channels
(with sympy)

« Automatic quasi-active expansion

« C++and .mod-file code generation

neat.netsim.NETSim

 C++ simulator for
Neural Evaluation trees

neat.FourrierTools
o Helper class

« time ¢ frequency domain
representation of impedance kernels

_images/sphx_glr_bac_firing_thumb.png

_images/sphx_glr_basal_ap_backprop_001.png
AP-backpropagation

<
J | I)
o
©
E
&
8
E El
E
S 2 Q
P 2 22
il st
3n 3 :
=

0
50 150
dsoma (M)

_images/sphx_glr_basal_ap_backprop_thumb.png
AP-backpropagation

_images/tree_overview.png
A

(rneat.STree

neat.MorphTree

vy

A\

B

node.parent

7

node.parent

node.parent

(\

node.parent

N
node.parent

N
node.parent

_images/sphx_glr_sequence_discrimination_001.png
- Ar=00ms
- Ar=40ms
- a=g0ms
~~~ centripetal
centritugal

Gentripetal
Centrifugal

50 ms

smv





_images/sphx_glr_sequence_discrimination_thumb.png
‘Sequence discrimination

i

*






_static/file.png





_static/broken_example.png





_static/no_image.png





_static/plus.png





_static/minus.png





