neat.SOVTree.getImportantModes¶

SOVTree.
getImportantModes
(locarg=None, sov_data=None, eps=0.0001, sort_type='timescale', return_importance=False)[source]¶ Returns the most importand eigenmodes (those whose importance is above the threshold defined by eps)
 Parameters
locarg (None or list of locations) –
sov_data (None or tuple of mode matrices) – One of the keyword arguments
locarg
orsov_data
must not beNone
. Iflocarg
is notNone
, the importance is evaluated at these locations (seeneat.MorphTree._parseLocArg()
). Ifsov_data
is notNone
, it is a tuple of a vector of the reciprocals of the mode timescales and a matrix with the corresponding spatial mode functions.eps (float) – the cutoff threshold in relative importance below which modes are truncated
sort_type (string ('timescale' or 'importance')) – specifies in which order the modes are returned. If ‘timescale’, modes are sorted in order of decreasing timescale, if ‘importance’, modes are sorted in order of decreasing importance.
return_importance (bool) – if
True
, returns the importance metric associated with each mode
 Returns
alphas (np.ndarray of complex (ndim = 1)) – the reciprocals of mode timescales
[kHz]
gammas (np.ndarray of complex (ndim = 2)) – the spatial function associated with each mode, evaluated at each locations. Dimension 0 is number of modes and dimension 1 number of locations
importance (np.ndarray (shape matches alphas, only if return_importance is
True
)) – value of importance metric for each mode